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The coupled equations problem of the quantum theory 
of atom-diatom reactive scattering 

by FELICJA MRUGALA 
Institute of Physics, Nicholas Copernicus University, 

Grudziadzka 5/7, 87- 100 Torun, Poland 

Various formulations of the coupled equations in the quantum theory of atom- 
diatom reactive scattering-based on the ordinary Schrodinger equation and on the 
generalized equations of the arrangement channel quantum mechanics-are 
summarized with emphasis on symmetry properties of these formulations. New 
simplified and/or symmetrized versions are presented of the coupled ordinary 
differential equations derived previously (using the mixed Jacobi/hyperspherical 
coordinates) from the two distinct generalized Schrodinger equations which 
incorporate the arrangement channel permuting and the Fock arrangement 
coupling scheme, respectively. Inhomogeneous coupled equations arising from the 
close-coupling description of some related half-collision processes are also included 
in the considerations. Numerical approaches to solution of the coupled equations 
problems are recapitulated. The log-derivative method is presented in various 
versions. The material included in the presentation supplements previous reviews 
on numerical methods for molecular scattering calculations in that: (i) more 
information is given on implementations of the invariant imbedding technique; and 
(ii) determination of scattering wave functions and evaluation of some first- and 
second-order transition amplitudes involving these functions are considered in 
addition to determination of the scattering matrices. 

1. Introduction 
In the description of molecular reactive scattering, the problem of accounting for 

the change of chemical identity between reagents and products is essential. Two formal 
approaches to this problem have become important in the quantum theory of atom- 
diatom reactive scattering. In the traditional ordinary Schrodinger equation approach, 
the difference between reagents and products is accounted for essentially by 
appropriate design of coordinate system, i.e., on the ‘kinematical level’ of description. In 
the approach offered by the arrangement channel quantum mechanics (for a recent 
review, see Kouri and Baer (1986)), called here the generalized Schrodinger equation 
approach, the problem of existence of different asymptotia in reactive collisions is 
resolved on the ‘dynamical level’, by intervening into the structure of the equation of 
motion. 

Most of the coordinate systems which have been especially designed or adapted to 
description of atom-diatom reactive scattering fall into the category of natural reaction 
coordinates (Marcus 1966, Light 1971) or into the category of hyperspherical 
coordinates (Smith 1960a, b, Johnson 1980). The essential difference between these 
categories concerns construction of the so-called scattering coordinate. In general 
terms, this is a coordinate which measures the progress the collision system has made 
from (or to) the condensation stage to (or from) the fragmentation stage. There are, of 
course, three different atom-diatom fragmentations-arrangement channels- 
possible in a triatomic system and the three-atom dissociation channel which is usually 
excluded from consideration. 
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2 F .  Mrugala 

In the natural reaction coordinate systems, the scattering coordinate is defined 
separately for every atomcliatom arrangement channel, usually as an arc length along 
some reference curve in the space of relative configurations of the three atomic nuclei 
which is placed possibly close to the path of minimum electronic energy within a 
respective arrangement channel region (‘tube’) of this space. Obviously, when the 
Schrodinger equation for the nuclear motion on a given potential surface is solved in 
the natural reaction coordinates, the necessity arises for matching the solutions from 
the different arrangement channel tubes at some surfaces in the condensation (strong 
interaction) region of the configuration space. The natural reaction coordination 
systems have been particularly popular and useful in solving collinear models of 
reactive collisions (see the reviews: Walker and Light (1 980), Kuppermann (198 l), Baer 
(1982), Basilevsky and Ryaboy (1982)). In a rigorous description of reactive collisions, 
usefulness of the natural reaction coordinates approach has been found to be rather 
severely limited by considerable complexity and possible inaccuracies of the matching 
procedure. 

In the hyperspherical coordinate systems, the scattering coordinate-the 
hyperradius-is defined to describe simultaneously all the fragmentation channels 
possible in a collision system. There is no need for troublesome matching of solutions 
arising in the strong interaction region. The hyperspherical coordinates become 
inadequate, however, in describing the system at the fragmentation stage, with atom 
and diatom fragments infinitely separated. This causes some complications in 
asymptotic analysis of solutions of the Schrodinger equation. 

In the generalized Schrodinger equation approach, a decomposition of the total 
wavefunction into pieces+ach describing only one atomcliatom arrangement 
channel-is made which corresponds, in a sense, to the division of the configuration 
space into the separate arrangement channel regions in the natural reaction 
coordinate-ordinary Schrodinger approach. The matching of the total wave function 
generated in the different arrangement channel regions is replaced with a coupling of 
the different arrangement channel components of the total wavefunction which is 
introduced explicitly into the generalized Schrodinger equation, usually in the form of 
potential-like terms. The choice of coordinate representation is not as essential for 
overall adequacy of description of reactive collision as in the case of the ordinary 
Schrodinger equation but it still matters a lot when the generalized equation is to be 
practically solved. Of some importance is the fact that each component of the total 
wavefunction may be represented in its own coordinate system, most suitable for 
describing a given atom-diatom arrangement. All the channel coordinate systems may 
have a common scattering coordinate or three different channel scattering coordinates 
may be employed. 

Concerning practical approaches aimed at solving eventually the ordinary or the 
generalized Schrodinger equation, two categories of methods may be distinguished: 
close-coupling methods and variational methods. Actually, methods of both categories 
have been (or could have been) derived on a basis of some variational principle 
connected with the quantum-mechanical equations of motion. The difference lies in the 
assumed form of trial solutions of these equations, the ‘best’ of which is sought for by 
any individual method. 

In the close-coupling methods, trial wavefunctions or their arrangement channel 
components are in the form of expansions in some basis functions which span the parts 
of the entire configuration space available to the collision system on surfaces with fixed 
values of the scattering coordinate or the parts of the particular arrangement channel 
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Coupled equations of scattering 3 

regions on surfaces with fixed values of respective channel scattering coordinates. The 
basis functions may be modified, stepwise or continuously, with changing the 
parameters of the surfaces and the expansion coefficients have to be, of course, 
functions of the scattering coordinate(s). For the coefficient functions which correspond 
to the actual (approximate) solution of the ordinary or of the generalized Schrodinger 
equation, sets of coupled equations-differential or integro-differential in 
cases with multiple scattering coordinates-are obtained. The number of equations in a 
set is made finite by retaining only the most closely coupled ones-the close-coupling 
approximation. Obviously, the strength of coupling depends on the shape of the 
potential surface, on properties of the basis functions and on the coordinate system 
employed. For usefulness of the close-coupling methods, it is important that a kind of 
(quasi-)separability exists in the collision system between motion along the scattering 
coordinate and motions along the remaining coordinates in the coordinate system 
chosen which allows truncation of the coupled equations to a small set. 

In the variational methods, trial solutions are expanded in basis functions which 
describe all degrees of freedom of the collision system. From the condition of 
stationarity of the functional employed, sets of algebraic equations are obtained for the 
expansion coefficients. Since the choice of coordinates and of basis functions is not 
limited by any quasi-separability requirement these direct variational (algebraic) 
methods are potentially more flexible than the close-coupling methods in describing 
collision systems at the condensation stage and therefore are particularly suitable for 
reactive systems. Some remarkable research has been carried out in recent years on 
utilization of the algebraic approach in atom-diatom reactive scattering calculations. 
Methods have been developed using various versions of the Kohn principle, for the 
scattering S matrix (Zhang and Miller 1987, 1989), for the log-derivative matrix 
(Manolopoulos et al. 1989), and for the Wigner R matrix (Linderberg et al. 1989). These 
methods can be exploited to carry out calculations within the generalized as well as 
within the ordinary Schrodinger equation approaches. A parallel (actually an earlier) 
trend in the search for efficient algebraic methods for molecular reactive scattering 
calculations has been concerned with the generalized Lippmann-Schwinger equations 
rather than with the Schrodinger equations and has resulted in developing methods 
which use the Schwinger or Schwinger-like expressions for the reactance matrix 
(Schwenke et al. 1988, Zhang et al. 1988) and the methods based on the Newton 
variational principle (Schwenke et al. 1988, 1989) and on the scattering wave 
variational principle (Sun et al. 1990a, b). 

The close-coupling methods, being undoubtedly the most powerful and convenient 
methods of investigating non-reactive molecular scattering processes (see Lester 
(1976)), have played the leading role in advancing the description of reactive atom- 
diatom collisions from the stage of collinear models to the present level of rigorous 
quantum-mechanical treatment in full dimensionality (see the reviews: Wyatt (1979), 
Walker and Light (1980), Schatz (1986)). These methods continue to be useful tools in 
the branch of reactive scattering investigations (see Pack and Parker (1987, 1989), 
Parker et al. 1987, BaEic et al. 1990, Darakjian et al. 1991) despite the rapid 
development and impressive achievements of the algebraic approach. Using a close- 
coupling method seems to be the most natural choice within the ordinary Schrodinger 
equation approach. Numerous formulations of the coupled equations for atom- 
diatom reactive scattering have appeared in the literature. Representative of the class of 
formulations using natural reaction coordinates and involving matching procedures 
are those by Elkowitz and Wyatt (1975) (see also Wyatt (1979)), by Schatz and 
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4 F .  Mrugala 

Kuppermann (1976) (see also Kuppermann (1981)), and by Walker et al. (1976) (see also 
Light and Walker (1976a), Walker and Light (1980)). Formulations using hyperspher- 
ical coordinates were proposed by Kuppermann and co-workers (Kuppermann et al. 
1980, Kuppermann and Hipes 1986, Cuccaro et al. 1989), by Hauke et al. (1980) and 
Romelt (1980) for collinear reactions, and by Pack and Parker (1987, 1989). 

Within the generalized Schrodinger approach, the close-coupling methods have 
had much less popularity. Several interesting attempts, however, have been made to 
derive coupled equations within this approach in an ordinary differential equation 
form (Diestler 1971, Stechel d al. 1979, Top and Shapiro 1983, Schwenke et al. 1987). 
Successful calculations based on one of such formulations (which also employs 
hyperspherical coordinates) have been reported by Schatz (1988). 

There has been a considerable interest and a number of papers (Kulander and Light 
1980, 1986, Band et al. 1981, Heather and Light 1982, 1983, Kouri and Truhlar 1989, 
Schatz 1989, Zhang and Miller 1990, Soares Net0 and Linderberg 1991) devoted to 
extending the quantum-mechanical time-independent description of dynamics of 
triatomic systems on a single dissociative electronic energy potential surface to half- 
collision processes in these systems which are initiated by weak interactions between 
bound and dissociative states. Direct dissociation of triatomic molecules by weak 
matter-radiation interaction is an example of such processes. In the usual perturbation 
theory description, this is a first-order process with respect to the weak primary 
(matter-radiation) interaction. 

There are also a variety of interesting physical processes amenable to a treatment 
on second-order perturbation theory level (see Singer et al. (1987,1989), Lee and Freed 
(1989), Zhang and Miller (1990)) in which the system moves on a dissociative surface 
only at an intermediate stage and undergoes two (weak) transitions from and to bound 
states at initial and at final stages, respectively. Application of the close-coupling 
approximation to description of these first and second-order processes gives rise to 
some boundary value problems for inhomogeneous coupled equations (Band et al. 
198 1). 

In the first part of this paper, the coupled (ordinary differential) equations problems 
for atom-diatom reactive scattering and for related half-collision and collision 
mediated processes are presented in forms general enough to account for all essential 
features and complexities (as compared with analogous problems for non-reactive 
scattering) which are associated with coordinate and basis set choices typical for the 
ordinary and for the generalized Schrodinger equation approaches. Thus, such points 
as curvilinearity and non-orthogonality of coordinates and non-orthonormality of 
bases are ofconcern. The procedure of scaling of basis functions (see Webster and Light 
(1989) and references therein) devised for lessening the impact of curvilinearity of 
coordinates on the structure of the coupled equations is briefly reviewed. Known and 
exploited so far in the context of the ordinary Schrodinger equation, the procedure is 
adapted here and demonstrated to also be useful in cases of the generalized equations. 
Emphasis in the presentation is, however, on symmetry properties of the coupled 
equations, especially of those arising from the generalized approach, as it is the aspect 
of great importance for its own as well as for the design of efficient numerical methods 
for solving these equations. In particular, self-adjointness of the coupled equations 
derived from the generalized Schrodinger equation in the Fock arrangement coupling 
scheme (Schwenke et al. 1987) is examined and a new intrinsically symmetric 
formulation of these equations is presented. The considerations on the coupled 
equations (included in Section 3) are preceded by a short introduction (Section 2) 
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Coupled equations of scattering 5 

providing some necessary details on the two-the ordinary and the generalized 
Schrodinger equations based-formalisms in application to description of atom- 
diatom reactive scattering. 

The second part of this paper is devoted to numerical solution of the coupled 
equations. Some general remarks on this matter-a recapitulation of ideas involved in 
construction of adequate algorithms-are given in Section 4. Considerations of 
Sections 5.1. and 5.2. are concentrated essentially on one-the log-derivative-method 
which has found since its publication (Johnson 1973) innumerable applications to 
molecular scattering calculations (see Manolopoulos and Wyatt (1989), BaEic et al. 
(1990), Darakjian et al. (1991)) and which has been subjected in recent years to several 
modifications and generalizations (Mrugala and Secrest 1983a, b, Mrugala 1983,1985, 
1989,1990, Manolopoulos 1986,1988, Alexander et al. 1989a, b, Darakjian and Hayes 
1990). Newly modified versions, among them-for direct evaluation of energy 
derivatives of the scattering matrices, and a new extension-to determination of 
scattering wavefunctions and of so-called ‘half-integrated Green’s functions’ (see 
Schwenke et al. (1988), Sun et al. (1990))-are included in the present review with the 
hope of making the method even more useful (widely applicable). In Section 5.3., two 
other methods, widely used in close-coupling calculations, are reviewed briefly and 
compared with the log-derivative method. 

2. The quantum-mechanical time-independent description 
of atom-diatom reactive scattering: an outline 

The problem of interest here consists basically in solving the time-independent 
Schrodinger equation for relative motion of three atomic nuclei on a given electronic- 
energy potential surface V in the range of total energy E where different two-cluster 
fragmentation, i.e. atom-diatom arrangement channels are accessible but the three- 
atom dissociation channel is deeply closed (and therefore can be discarded) 

( E - H ) Y  =o. (1) 
The problem necessitates considering different asymptotia of the total Hamiltonian H ,  
H:, which describe the two clusters of the three different arrangement channels, 
denoted hereafter with a = CI, 8, y, at infinite separation. As a kind of extrapolation of 
these asymptotic Hamiltonians to any finite atom-diatom separations, the channels 
Hamiltonians H ,  are usually introduced 

H,=T+V,, for a=a,p,y, (2) 
where T denotes the kinetic energy operator (after removal of the centre-of-mass term) 
and V ,  is a part of the potential Vwhich involves the potential of the respective diatom 
Eib, and a distortion potential V:ist, i.e., V,  = cib + By construction, the channel 
Hamiltonians mainly govern the non-reactive, i.e., elastic and purely inelastic, 
transitions in the collision system; for the transitions with atomic rearrangements, the 
potentials Va, Va = V - V,  for a = CI, 8, y, become primarily responsible. The implied 
partitions of the total Hamiltonian are 

H=H,+ V, for a=a,p,y, (3) 

H,=H,O+V?. 

where 
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6 F. MrugaEa 

There are standard coordinate systems in the six-dimensional space of relative 
configurations of a three-body system in terms of which the particular channel 
Hamiltonians Ha for a = a, p, y can be conveniently represented. These are the sets of 
scaled Jacobi coordinates (see, e.g., Smith (1960b)). To describe configurations of atoms 
in given atomdiatom arrangement channel a, two vectors are introduced in a 
laboratory fixed coordinate frame, r, and R,, which join the atoms in the molecule and 
the centre of mass of the molecule with the unbounded atom, respectively, and are 
scaled by appropriate mass-dependent factors to give the kinetic energy operator T 
with one and channel independent reduced mass p 

The three sets of the vectors (Ru7 r,) corresponding to the different channels 'a' are 
connected by orthogonal transformations-the kinematic rotations (Smith 1960b). 
Expressing the Laplacians AR, and A,, in the respective spherical coordinates of the 
vectors R, and r,, (R,,OR,,qR,) and (r,, Or0,qra),  one can write the asymptotic 
Hamiltonian of the channel a 

H:= lim H,= lim H ,  
R.+m R,+m 

in the form 

0 h2 1 a a 
Ha(&,, j a )=  -- - ~ R 2  -+H:Gvib(Ra7 j )  a )  

2 p  R,' dR, d R ,  

j a  fa, Ra), ?a = (Oro, qr,)7 Ra = (ORa> (PR,), 

where the operator describing the unbounded motion in this channel, i.e., the motion 
along the R, coordinate-the channel scattering coordinate, is clearly separated from 
the operator describing the bounded ro-vibrational motion 

hj and hl denote here the respective angular momentum operators associated with 
diatomic and with atomcliatom relative rotations. The form (5) of Ha0 is basic for 
specifying the so called scattering boundary conditions for solutions of the Schrodinger 
equation (I), i.e. the form which the function Y should assume in the asymptotic regions 
of the configuration space corresponding in the three atom-diatom arrangement 
channels, defined as the regions where R, goes to infinity while ra remains finite 
for a = a, /I, y. 

Let !Pa'"' be the solution which describes the collision process at energy E in the case 
when the initial arrangement of the system is a' and the initial inelastic channel within 
this arrangement is n'. n' is the collection of quantum numbers characterizing a bound 
state of Let .Fa,fl, denote the corresponding ro-vibrational energy of the a'th 
diatom. Now, let us introduce a vector 

Y"' , 
1 x Nzb 
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Coupled equations of scattering 7 

consisting of the solutions Y""" which correspond to all open at the energy E channels 
n'(Ea,,, < E ) .  Denoting 

one can write 

p ' ( R , ,  Y,)=(c,)-"2rp"(~a)(ma(Ra)8a,o, - n"(R,)Y""'). (7 4 
Fa( = R:r:) is the factor coming from the Jacobian in the (R", Y,) coordinates, 
~,,=E,sinORusinO,u. (p; x N n  is a set of N" eigenfunctions of the Hamiltonian 

(En)- l". More specifically, the functions in the set @' assume 
the form 
f i r - v i b  =(-" ) f l / Z ~ : - v i b  

(cP")~ = j a v ~ , ( r J g Y : ~ ( ~ a ~  ffa), n =  (u>j ,  1 ), (8) 

with gY;liM denoting the standard eigenfunctions of the angular part of A:-Vib in the 
total angular momentum representation ( J ,  M ,  1, and j are the quantum numbers 
associated with the operators J2 = (hl+ hl)', .fz, 12, and i2, respectively) and with Xavj 
satisfying the vibrational equation 

+ Eib(r,,) - tavj javj(ra) = 0. 1 [---+ h2 d2 hZj( j+ l )  
2 p  dr: 2pr: 

my and n" occurring in equation (7a )  denote, respectively, regular and irregular 
solutions of the radial equation 

where 

Ea and 12 are diagonal matrices of the ro-vibrational energies E,, and of the 
eigenvalues I,,(l, + 1) of the orbital angular momentum operatorf2, respectively. I" is the 
N" x N" unit matrix. 

Y""' in equation ( 7 4  stands for a block of one of the standard matrices of the 
scattering theory S ,  T, or K. Each of these matrices is connected with a definite form of 
the solutions ma and na (see, e.g., Lester (1971)). In the case of the reactance matrix, i.e., 
when Yaa' = K""', the matrices ma and na are constructed from the spherical Riccati- 
Bessel and Riccati-Neuman functions, respectively. The convenient normalization in 
this case (which will be assumed in the next Section) is 

The matrix Y gives (directly or after a simple transformation) the probability 
amplitudes for all transition possible in the collision system at given energy E .  So, by 
determining this matrix the scattering problem is essentially solved. 

As mentioned in the Introduction, there are two formalisms which gives a choice 
within which solutions of the a tomdatom reactive scattering problem may be sought. 
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8 F.  Mrugala 

In the first, the ordinary Schrodinger equation, equation (l), is directly dealt with; in the 
second, a generalized form of this equation becomes a central object (Evans et al. 1983) 

- 
(E - W)YI = 0. (10) 

(W)""' =Ha"', with a, a' =a, p, y, (10 4 
The Hamiltonian W in the generalized equation is a 3 x 3 matrix of operators Ha"' 

which satisfy the condition 

CH""'=H, for a'=a,p,y. (10 4 
a 

E=EO, where U den_otes the 3 x 3 matrix identity operator. 
of the generalized Schrodinger equation is a 3 x 1 vector of 

components !Pa with a=a,p,y which summed up give a solution of the ordinary 
equation 

Any solution 

The generalized Hamiltonian is usually given in the form 

w = w, + v, 
where 

and V is a matrix potential 

(V)""' = Vaa', with a, a' =a, j, y. (11 b) 
The operators Vaa' are constructed from the potentials Va (see equation (3)) in a way 
guaranteeing the condition (10 b) and meeting the requirement (which has been the 
motivation for developing the arrangement channel quantum mechanicsFthat the 
related Lippmann-Schwinger equations have well-behaved kernels (i.e. amenable to 
approximations with finite rank kernels). A variety of possible constructions of Vaa' is 
included in the following formula 

V""' = Waa,Va', 1 Wasp = 1 ,  for any a', (12) 
a 

where Was, are elements of a 3 x 3 matrix W-the arrangement Channel Coupling 
Array (CCAbintroduced by Baer and Kouri (1973) (see also the reviews: Kouri (1985), 
Kouri and Baer (1986)). Most of the arrays W considered so far (Baer 1989) lead to non- 
symmetric matrices V, i.e. (VT)aa' = V"'" # V""'. In particular, highly non-symmetric 
matrices V result from the use of the channel permuting arrays which are characteristic 
for (the original form of) the Baer-Kouri-Levin-Tobocman (BKLT) equations (see, for 
example, the review by Barrett et al. (1983)). An array leading to a symmetric 
generalized potential was proposed recently by Neuhauser and Baer (1988). 

An important case of a generalized Hamiltonian is the Hamiltonian in which the 
matrix V couples the different arrangement channels according to the Fock (F) scheme 
(Schwenke et al. 1987, Zhand et al. 1988). In this case 

Vaa'=6a,a<Va+(1 - d a , a , ) ( H - E ) .  (13) 
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Coupled equations of scattering 9 

Actually, the Fock scheme had been used in nuclear physics (for references, see for 
example, Adhikari (1983)) and in electron scattering theory (see, e.g., Burke and Seaton 
(1971)) and introduced into the field of molecular reactive scattering (Micha 1965, 
Miller 1969) long before the arrangement channel mechanics arose (Kouri et al. 1977, 
Evans et al. 1981, 1983). The Hamiltonian in the Fock scheme does not always satisfy 
the mathematical requirements of this theory but has the advantage of being always 
Hermitian (Tobocman 1975, Adhikari 1983). 

In connection with description of the half-collision processes in triatomic systems 
and of the second-order collision mediated processes mentioned in the Introduction, 
evaluation of the following (standing wave) transition amplitudes, Kb and K6b, 
respectively, will be considered in further parts of this paper 

Kb 4 YIXtb), (14) 

Y denotes here the set of the scattering states (see quation (7)) 

Y =  Y " , Y B ,  yy  ), 
I X N , ,  ( 1 X N &  1 X N &  1 X N g p  

Cb and t6 are triatomic bound states. X and 1 denote the interactions between the 
bound and the scattering states and 'P.v.' is the abbreviation of 'principal value'. 

3. Symmetric formulation of the coupled equations problem 
3.1. T h e  ordinary Schrodinger equation approach 

Let us start with a sketchy derivation of the coupled equations and, following 
original papers on this matter (Burke et al. 1962,1966), let us present the derivation as 
being based on the Kohn variational principle (Kohn 1948). The formulation of this 
principle for the matrix K will be convenient here. 

Let Y denote a row vector of exact solutions (in any coordinate representation) of 
the Schrodinger equation (1) which satisfy the boundary conditions with the matrix K, 
described (in the Jacobi coordinates representation) in the previous section. The Kohn 
principle states that the following functional [ K ]  

is stationary around its exact value, K, with respect to variations of the exact solutions, 
6Yi,6Yi= Yzt- Yfori= 1,2,ofwhich thevariation&Y, iscompletelyarbitraryand the 
variation 6Yl is restricted only by the requirement that the trial solution Y,, should 
satisfy the correct boundary conditions with the trial reactance matrix Ktl.  Since the 
first variation of the functional [K], SCK], can be shown to assume the form 

the condition of stationarity of [K], 6[K] =0, becomes equivalent to the requirement 
of vanishing of the two (matrices of) integrals 

(6YiI(E-HH)!?'J=0, for i= 1,2. (18) 
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10  F. Mrugala 

For the present purpose, it suffices to consider only a single condition of the above form 

2P Z =2 (6Yl(E - H ) Y t )  = 0, h (19) 

where the omission of the subscript ‘i’ means that both the variation 6Y and the trial 
solution Y, will be treated as completely arbitrary. 

Let ( x , y )  be a system of suitable curvilinear, in general, coordinates in the 
configuration space of the atomcliatom system (i.e. in the space spanned by the 
Cartesian coordinates of the mass-scaled Jacobi vectors R, and r,). x denotes a 
scattering coordinate in terms of which the coupled equations are to derive and y 
stands for a set of ‘internal’ coordinates. ( y is, of course, a single coordinate when a 
collinear model of collision is assumed). Let us divide the set y into two subsets, 
y = (q, p), in a way to be specified below. For a Laplacian in the (x, y) coordinates, the 
following general expression should be employed 

1 
J 

A = -  PTJGP, 

where PT(P) denotes a row (column) vector of derivative operators 

a a  a 
PT = (Px, P;) = (Px,  P;, P;) = ( a x ,  - - aql 7 . . . , G 9 . . . ) ,  

G is the respective contravariant matrix tensor, and J is the Jacobian, J =(det G)-  * I2 .  
The class of coordinate systems which are of interest in the context of close-coupling 

treatments of reactive scattering can be specified as follows: 

(i) the Jacobian assumes the following factorized form 

J = j  ( x ,  Md; (21)  

(ii) the element G”” is independent of any internal coordinate from the subset p, i.e. 
G”” = GXX(x ,  4); 

(iii) among the internal coordinates from the subset q, there may be some which are 
non-orthogonal to the x coordinate, i.e. the block GX4 of the metric G is allowed 
not to vanish; 

(iv) apart from GX4 (and G4”), all off-diagonal blocks of G, i.e. GXP and Gqp (and their 
transposes) vanish. 

The trial functions to be inserted into the integral Z assume in the (x, y) coordinates 
the following ‘separable’ form 

,403 1 G(x7 Y )  = 44 y;  x) $ ( X I ,  6 W 7  Y )  = 44 y; XF$,  (22) 
1 X N  

which involves (in the vector 4) a set of given (usually real) basis functions in the space 
of internal coordinates. This makes possible a conversion of I to an integral over the 
scattering coordinate only 

Z = ( W W ?  (23 )  

with 

(23  a) 
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Coupled equations of scattering 11 

The symbols ( I ) and ( I 3 introduced here have the meaning 

(YIZ)= dx YTZ, (YlZ]= J d y  YTZ. (24) s s 
In view of arbitrariness of S$, the desired coupled equations for the unknown (vector 
of) functions $ follow from the condition (19) 

9$=0.  (25) 

The ordinary differential operator 9 takes, in general, the form 

where ak are real N x N  matrices. The following features of 9 are desirable when 
designing efficient and accurate numerical methods for solving equation (25) is 
attempted: 

(i) that 9 should involve a possibly small number of coupling terms. Obviously, 
not only the size N of the matrices ak is meant here but their structure too. 
Equations with a2(x) = I and, possibly, with a(x) = 0 are of special interest. 

(ii) that 9 should be a formally self-adjoint differential operator (see Dunford and 
Schwartz (1963)), i.e. 

9 = 9 t ,  (26) 

where 

The well-known Lagrange identity (see, for example, Hartman (1 964)) 

(superscripts in parentheses denote hereafter derivatives with respect to x), which holds 
for any functions $ and d, in domains of 9 and 9+, respectively, and yields in the case of 
the self-adjoint operator 9 the following relation for $ and d, satisfying equation (25) 

WE( = z,C+, $1 = const. (28) 
Satisfying this relation of conservation of the (generalized) Wronskian by solutions of 
the coupled equations (25) is essential for the approximate solutions Yz  of the original 
Schrodinger equation to satisfy strictly the microscopic reversibility and the flux 
conservation relations. 

Translated into properties of the matrices ak, self-adjointness of the operator 9 
means 

a, =a:, a, = a(,l)++(a, -a:), a, = a;f-(aT)(') + a(,2). (29) 
Obviously, assuring the properties (i) and (ii) simultaneously is the goal which should 
be kept in mind when the choice of coordinate system and of the basis functions is 
decided. A great deal can be achieved in this respect by scaling the total wavefunctions 
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12 F.  Mrugala 

(or equivalently, the basis functions) with a proper coordinate system dependent 
factor-the idea which has been exploited with particuiar success by Light and co- 
workers in their formulation of the coupled equations in natural reaction coordinates 
(Light and Walker 1976a, Stechel et al. 1988, Webster and Light 1989). Following the 
work of these authors, let us define the scaling factor c as 

c = G””j, (30) 

(30 4 

scale with it the basis 4 
4( Y ,  x) = CC(% 411 - cp( y; XI, 

and convert the scaled Laplacian, c-’/’Ac-’/~, to the form 

where 

(30 4 
“ 1  
G=--G,  

G”” 

and the curly parentheses are to indicate that the operators act only within them. 

introducing yet another scalar product 
Exploiting further the assumptions made above on the (x, y) coordinate system and 

[ Y l Z ] =  j 0 d y  YTZ, 

one can write 9$ of equation (23 a) in the form 

where 

The following expressions can be easily obtained for the coefficient matrices ak of the 
operator 9 (see equation (25 a)) 

a2(x)=S(x), al(x)=2[A(x)+C(x)], a,(x)=P(x)+B(x)+~(x), (33) 

where 

s = Ccplcpl, A = CcplP”cp1, B = C c p l ~ X P X c p l ~  (33 4 
c = $[cpI( P p ”  + G”qP,)q], (33 b) 

P = [cpp((pXGxq~, + ~ p ~ , ) c p ] ,  (33 c) 
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Coupled equations of scattering 13 

S is evidently a symmetric matrix. The matrix % is also symmetric and the matrix C can 
be converted to the skew-symmetric form 

c = 3 KcpI ~qp,cpl - c GI"4p,cplcpl), (33 e)  

provided the basis cp is such that the functions (zxqcp, (zqqP,(p, and dppPpcp vanish at the 
boundary of the integration range over the internal coordinates (4 ,  p). Concerning the 
other matrices, the following properties can be easily shown 

and 

Thus, 

I 
where P = i(P + PT). I 

A = A +$S'", 

B=A")+$S'2)-B, where B=[P,cpIP,cp], 

where A =$(A - AT), 

P = C(1) + p1. 

a, =2(A +C +is(')), 
a, = W + P +$ay), where W = W -B, 

(34) 

(35) 

and it is a simple matter to check that the self-adjointness relations (29) are satisfied. 
Due to the scaling (30H30 c), all the complications have been eliminated which the use 
of curvilinear coordinates might cause in the structure of the coupled equations except 
for that related to the non-orthogonality of these coordinates (the occurrence of the 
matrices C and P). The extra potential-type coupling arising from the scaling, Vex' (see 
equation (32 b)), cannot be considered a complication, of course. The main achievement 
lies in that the matrix a2 becomes the unit matrix if only the basis cp is orthonormal with 
respect to the scalar product [I] (see equation (33 a)). The first derivative coupling, the 
matrix a,, may have three origins: 

(i) non-orthogonality of the scattering coordinate to the internal coordinates, 
(ii) non-orthonormality of the basis in the internal coordinates, and 

(iii) 'non-diabaticity' of the basis, i.e. its (parametrical) dependence on the 
scattering coordinate. 

Whereas non-orthogonal bases and coordinates can be easily avoided in formul- 
ation of the coupled equations for atom-diatom reactive scattering, within the ordinary 
Schrodinger approach the use of bases modified suitably along the scattering 
coordinate is essential for keeping the number of these equations on a reasonable level 
(Walker and Light 1980). Indeed, all the well-known formulations of this category 
(Elkowitz and Wyatt 1975, Schatz and Kupperman 1976, Walker et al. 1976, Pack and 
Parker 1987, Cuccaro et al. 1989) do employ orthogonal coordinates and orthogonal 
but non-diabatic bases. 

Formulation of the coupled equations problem is completed by specifying 
appropriate boundary conditions for the solutions $(x). Let !P'(x, y) be the set of the 
trial functions Y,  which are to describe the collision process at given energy E for all 
possible (open) initial inelastic channels in the system being initially in the arrangement 
channel a' 
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14 F. Mrugala 

Assume that the scattering coordinate x is defined in such a way that x--+oo in the 
asymptotic regions of the configuration space associated with the three arrangement 
channels a, fi, and y. An adequately chosen basis cp( y; x) should have the property that it 
splits when x+  co into three groups cp"( y; x), for a = a, j?, y, each describing the internal 
motion in one atomcliatom channel only. Then, grouping accordingly the rows in the 
matrix $"', [yY'IT = [(I,P")*, (~,b~"')~], one can decompose the total wavefunctions 
'Pa' into parts Y""' with a = a, fi, y, each of which describes at x+  oo only the respective 
channel a 

where 

Obviously, each component Yaa'(x, y) for a = a, fi, y, should match the correct form 
P'(R, ,  ja), given in equation (7 a). The matching is done at a sufficiently large value of 
x, xm, by imposing the following continuity conditions 

(plY""'] =(pIP']l,=.&, , (36 4 

(36 b) ( ~ I ( c P ) x ~ a a ' l  = (~ l (~~) , 'P""' l lx= , ,  > 

where 

(CP),  = G""P, + G*9P,. 

The resulting conditions for the functions I/P"(x), a =a, fi, y, read 

ga(x m ) V ' ( x m )  = m"(xm)aa, a' - &(xm)Kaa'? (37 4 
d 

dx 
P ( X ~ ) - ~ ' ( X ~ ) +  [A""(x,)+Caa(x,)+d "(X,)]$"~'(X~) 

= t i p ( ~ , ) G , , , ~  - Y(x,)K""'. (37 b) 

where 

g"=(cp "" Icp "" ]= [ cp" I;., -cp" ] , ( p = c - l / Z q a ) ,  (37 c)  

(37 4 
(37 e) 

(37f  1 

d" = ( cpal ( c  - '"( GP),c - l"} cp"] - 3 [ cp"l (PiG"') cp"], 

rip = (ci)al(GP)x(~o)- 1/2@ama]. 

d ( x )  =(V( Y; x)I(caCRa(x, Y), Ta(x, Y)I) l izqaC Ya(X, y)ImaERa(x, Y)II, 

The matrices d and Y are defined by formulae analogous to equations (37 e) and ( 3 7 f ) ,  
respectively, obtained by replacing ma with n". S"", A"", and C"" denote the blocks of the 
respective matrices defined in equations (32 a, b) which correspond to the subset qa 
of the entire basis q. Obviously, S"= I" and P= A" for orthonormal bases cpa and 
c""=O (since Gxq=O) for orthogonal coordinates (x, y). The conditions (37 a, b) allow 
one to determine the (approximate) reactance matrix K after integration of the coupled 
equations in the interval [x,, x,], where x, is a value of the x coordinate corresponding 
to all three atoms being close together. The condition which should be imposed on the 
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Coupled equations of scattering 15 

functions $P'(x) at the xo boundary results from the requirement of finiteness of the 
total wave function and is 

lp'(x,) E 0. (38) 

Example 
The coupled equations in the Delves hyperspherical coordinates 

x=r,2 +R:, ya=(Va,ta,fia), 

where 

Actually, these are three sets of coordinates, (x, y,) for a = cc, b, y, each of which is really 
convenient to use only in a part of the entire configuration space, namely in the part of 
the respective arrangement channel region which extends outside the exchange (strong 
interaction) region but not too far into the asymptotic region. A detailed analysis of the 
usefulness of the Delves coordinates in solving the Schrodinger equation for atom- 
diatom reactive scattering (in three dimensions) was presented by Pack and Parker 
(1987). In the method proposed by these authors, the Delves coordinate sets are 
employed as intermediates between a set of (adiabatically adjusting principal axis) 
hyperspherical coordinates appropriate to describe the exchange region and the sets of 
the Jacobi coordinates appropriate in the asymptotic regions. Some points of their 
approach will be followed here. 

Let us take one set (x, yJ and confine ourselves to the part of the a& arrangement 
channel region of the configuration space which corresponds to intermediate and large 
(but not too large) values of the hyperradius x. (x, y,) is a set of orthogonal coordinates 
and the corresponding diagonal elements of the tensor G are 

G"*= 1, GZ'l=G'la'la=x-2 , G t R e R = ( ~ ~ ~ ~ ~ , ) - 2 ,  G[I*er=(xsinV,)-2, 

G ~ R ' R = ( ~ ~ ~ ~ p l a s i n 0 R ~ ) - 2 ,  GP"=(xsinq,sin Ora)-'. 

Partitioning the internal coordinates ya into sets qa=(qa) and p,=(P,,R,), one can 
write the Jacobian as J, = c,~,, where c, = $x5 sin2 24, and O, = sin ORa sin Or,. With 
this choice of the scaling factor c, (see equations (21) and (30)), the operator of 
equation (32 a) assumes the form 

- v h2 ( a2 1 B ?(?,) H ( x  y )= -- -+--- 
, a  2 , ~  ax* x2 8q,Z ~ ~ s i n ~ ~ ,  

Note that Vext= - 1/4x2 and that after rejecting the terms with? andP  oneobtains the 
respective scaled Hamiltonian for collinear reactions in the (x, 1,) coordinates 
(although J ,  = c, = x  in this case). Assuming that cos2 4, E 1 in the region of interest one 
can form the basis cp and its part 

pa( Ya; X) 7 
l x N n  

of the following functions (cp"), (cf. the functions (Cp"), defined in equations (8,8 a)) 
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16 F.  Mrugaia 

where xavj are solutions of the equation 

+ Cb(x sin q,) - caVj(x) { h2 [ a 2  i i i + l ) ]  
2px2 aq: sin2?, 

The basis cp" is orthonormal with respect to the scalar product [I], (see equations (31) 
and (50)). For the corresponding coefficient matrices of the coupled equations, one gets 
(see equations (33,34)) 

S"" = I", Aan = A"", c a a  = pa, = 0, 

and 

x 2  sin' qa 

The matching of the solutions generated in the Delves coordinates to the asymptotic 
solutions in the Jacobi coordinates according to equations (37 a, f) involves the 
matrices 

and 

Concerning description of the half-collision and the collision mediated processes, 
the following close-coupling approximant is obtained for the vector of transition 
amplitudes from the triatomic bound state, Cb, to the scattering states in the 
arrangement channel a, !Pa 

Kab = ($Wb), 
where (39) 

An analogous formula for the amplitude K6b, K b b -  -($'14b), involves a vector of 
functions $*(x) coming from the respective close-coupling expansion of the state YE 

YTx, Y )  = G( Y;  x) $"4 * 
I X N  NXl 

The following inhomogeneous equation is obtained for $' 
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Coupled equations of scattering 17 

where 

$6(xo)=0 and appropriate conditions for J15(x,) and for (d/dx)$6(x,) are obtained in a 
way analogous to that described above in the homogeneous equations case. Obviously, 
no free-wave related term appears in these conditions 

$"x,)= -4x,)K6, (41 a) 
d 

-$6(~ , )+  dx [A(x,)+C(x,)+d(~,)]$~= -P(xm)K6. (41 b) 

n, h, and d denote here block diagonal matrices formed from the respective blocks Ip, if, 
and d" for a = a, /3, y, defined in equations (37 c-f); g"(x,) and Saa(x,) are assumed to be 
the unit matrices; and 

( K E Y = [ (  1 X N  l X N a  K u 6 y ,  ( l X N 6  K p 6 y ,  ( l X N V  K y 6 y ] .  

3.2. The generalized Schrodinger equation approach 
Proceeding to the derivation of coupled equations from the generalized 

Schrodinger equation, called here 'the generalized coupled equations', let us modify 
appropriately the above formulation of the Kohn variational principle. This means 
replacing the ordinary Hamiltonian in the functional [ K ]  with a generalized one, W, 
and taking Ytl and Y,, as trial solutions of the Schrodinger equation with the 
Hamiltonian W and of the adjoint equation with WT, W T =  W, + VT respectively. Both 
Yt, for i= 1,2 should have in the modified functional the following matrix form 

- 
As before, 'Yt, is required to satisfy the correct boundary conditions with the trial K 
matrix, K,,, i.e., the functions Y;;', when expressed in the Jacobi coordinates (Ra, ja), 
should assume at Ra+co the form P ' ( R a ,  j , )  (see equation (7 a)) with K;:' standing in 
place of Yaa'. The first variation of the modified functional is also given by equation (17) 
but with W and WT standing in place of H's in the first and in the second term, 
respectively. The condition of stationarity of [K] brings into consideration the 
following integral I (see equation (19)) 

(42) 
2P 
h a,a' 

I = ,  c (sYal(E-W)aa'Yp'), 

where 
for the F scheme, 
for the CCA schemes. ( E  - Ha)c3a,a, - Va' Waar, 

([E- W)""'= 

For the two (classes of) coupling schemes, the integral I can be converted to the forms 

1 
(F)I=- (z;'+I:!')- ($a', 

2 a.a' a,a' 
(43) 
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18 

where 

F.  Mrugala 

with 

In the form of fFIZ, use has been made of arbitrariness in choice of the partitioned form 
(3) of the total Hamiltonian H .  

Concerning coordinate representation of the generalized Schrodinger equation, the 
essentially new aspect is that different coordinate sets may be employed simultaneously 
in this equation (i.e. also in the condensation region of the configuration space) to 
represent different arrangement channel components of 

Most suitable are, of course, the three sets of the (mass-scaled) Jacobi coordinates. 
However, a common scattering coordinate has to be introduced for all channels if 
coupled equations in the form of ordinary differential equations are reguired. Let (x, y,) 
for a = a, 8, y be three sets of such coordinates, each set belonging to the class specified 
above. To distinguish between the metric tensors, the Jacobians, and between the other 
quantities characterizing these coordinate sets, the subscript 'a' will be added to the 
respective symbols introduced for the (x, y) system (similarly as it was done in the 
example of the previous subsection). 

Obviously, the choice of coordinate representation determines, to some extent, 
possible choices of basis function for expansion of the total wavefunction. Let 

(and [HI). 

47 Y a ;  x) 
1 XN" 

for a=a,B,y denote bases which are suitable for expansion of the particular 
arrangement channel components of the total wavefunction. Now, two things remain 
to be done: 

(i) the functions yl;'(x, y,.) and 6Ya(x, y,) occurring in the integrals I$' with 
ti=qa' and fs)i(lu' with s= F or CCA and a,a'=a,fi, y are to expand in the 
respective bases $" and ijY 

C'(X, y a * )  = V'( Ya, ;  x)P'(x), 6ya(x> y a ) =  P( ya; xMa(x), 

and 

order to convert them to the forms 
(ii) integration over all but the x coordinate is to be performed in these integrals in 

I?' = (6typy'p'), for ii = a, a', (47) 

Jm' = ( 6 t y 1 ( ~ ) ~ ~ ~ ' $ ~ ' ) ,  for s= F or CCA, (48) 

where 

(47 4 
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Coupled equations of scattering 19 

The symbols ( 1 ) and ( I 1, have here the same meaning as defined in equation (24). The 
subscript added to the latter indicates which of the three sets of (internal) coordinates is 
chosen for performing integration in the particular integrals, e.g. 

(yalZa'la = Ja dya[Y"(x, ya)lTza'Cx, Ya,(X, YJI- s 
Arbitrariness in this respect should be exploited, of course, to facilitate the operation. 
The choice made in equation (47 a) is the most convenient one as it means that the 
integration is carried out in the coordinates in which the channel Hamiltonian HI, 
assumes the simplest form. In equation (48 a), the two choices, &=a and &=a', seem to 
be equally convenient. 

With the goal of simplifying the operators 92"', let us adapt to the present situation 
the scaling procedure described above. This means scaling both bases, $a and @",which 
are inserted into the integrals I;' for ci=a,a', with the same factor (cg)-l/' 

$" = (cg) - '/'cp;, where cg = j,G?. (49) 
Two kinds of scaled bases appear in that way: cp: with a # i  and cpz= cpa, and 

Concerning the bases cp" for a = a, 0, y, let us make the following assumptions: 

each basis cp" is diabatic, i.e. cp" = cpa( ya). Using diabatic bases becomes practical 
in the context of the generalized Schrodinger equation. This is because each 
basis cpa serves to describe internal (i.e. bounded) motion within one arrange- 
ment channel only. The need for bases modified along the scattering coordinate 
in the ordinary Schrodinger equation approach is compensated by the explicit 
coupling of the various arrangement channel components of the total 
wavefunction, incorporated into the structure of the generalized equation. 
each basis cp" is orthonormal 

[@I  la = I", (50) 
where 

This does not guarantee, of course, orthogonality of the bases qa and cp"' describing 
different arrangement channels a and a'. They should, however, become orthogonal 
asymptotically, i.e. 

tqa( y a ) I ~ ~ ' (  Ya*(x, ~a))Ia - 0, for a z a'. 
X'ro 

As a result of the scaling, one gets the operators 9r' for a = a, a' and a, a' = a, B, y in 
the form 

d2 d 
dx dx 9F' = y;+ + 2(3?' + W?') - + *' + *' + ,$pa'  a r  (51) 
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20 F .  Mrugala 

where the N" x N"' coefficient matrices are given by the formula 

X?' = [fp:l(*)fpf]a, (51 a)  
with the following operators standing in place of (*) 

I ,  P ,  P x m  i(P&@x + ciqPq5), (Pxc:qPq + P&GzxPx), (51 b) 

for X = Y ,  d, B, %, 9, and P, respectively. 

functions I&), I/J~ = [($')', (+B)T, 

form (25) by composing the operator 

Finally, from the condition (,I = 0 (s = F or CCA) the coupled equations for the 
are obtained. They can be written in the general 

9 ,  
N X N  

of the blocks 

where 

(52) 
(F)Y'-aQ', for F scheme, = 

for CCA scheme. 

For the purpose of further discussion, let us write the operator 9 in the form 

(53) 
d2 d 

dx dx 
93 = q x )  y+ 2 [ d ( x )  + %.qx)] - + f l ( X )  + B(x) + P ( X ) -  V ( X ) .  

All the matrices introduced here have the block structure 

5 = ( P a ' } , , . .  (54) 

where 

%""' = j(Xy' + 57'1, for 5 = 9, d, B, g3 P, -P, 
and the respective matrices c' with a=a, a' are defined in equation (51 a-c). The 
difference between the F and the CCA coupling schemes is not indicated in equation 
(53). The important fact to remember is that only diagonal blocks of all the matrices 3 
(excluding V )  enter the coupled equations in the cases of the CCA schemes. 

Analysing more closely the operator 92 of equation (53X one can state that: 

(i) The diagonal blocks of the matrices a { x )  and g ( x )  vanish (everywhere), i.e. 
d m = O  and P = O .  In fact, this concerns all ihe matrices a:!'' and R?', i.e. &z'd and i!@'=O, and is a consequence of the assumed diabaticity of the 
bases rp" for a=% /I,?. The off-diagonal blocks of the matrices d and are, 
however, non-vanishing (except asymptotically) 

(55) 2 a'- - 2 - & a ,  1 -a"' @Q'=+C'. 
This is because the functions &' with afa' q u i r e  dependence on the 
x coordinate through the scaling factor and through the transformation 
y,,, =ya&, y,) which is implied in equation (51 a). 
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Coupled equations of scattering 21 

(ii) The matri2x 9 is symmetric and has simple diagonal blocks 

Y""(x) =I", for a = a, /3, y. (56) 

(iii) The matrices W and are skew-symmetric and symmetric, respectively. 
Strictly speaking, these properties are guaranteed under some additional 
assumptions concerning the bases cp", analogous to those mentioned above in 
the case of the matrices C and W (see equations (33 d, e)). 

(iv) The following relations hold 

d = d +39('), where d =+(a - ST>, 

B=d(1)+9(2 ) ,  where d(')=$(B-BF), (57) 

B = 9 + %?(I), where 9=3(P+By- 
These relations differ from those concerning the coupled equations in the 
ordinary Schrodinger equation approach, equation (34), only in that there is 
no counterpart of the (symmetric) matrix B here. 

(v) The matrix -Y representing the matrix operator (,V is the transposition of the 
matrix VT representing the potential ~ s , V T & s ~ V ~  = (,,V"7. So, the matrix Y 
is symmetric if it represents the (generalized) potential in the Fock coupling 
scheme (when s= F) .  In the case of the CCA schemes, symmetry of this matrix 
depends on properties of the particular arrangement channel array W 
employed. Obviously, 

(vi) In the CCA schemes, the operator 9 simplifies to the form 
= Fa" in any scheme. 

where the underlined letters denote the block-diagonal pa ts  of the respective 
matrices. The replacement of (ccAIV with tCCA,VT in this form leads to the 
adjoint operator (CCA+@t (see equation (26 a)). 

In summary, one can state that the coupled equations derived here from the 
generalized Schrodinger equation are self-adjoint if the (generalized) potential in this 
equation is symmetric. Consequently, the form of these coupled equations is rather 
simple, especially in the case of the CCA-type schemes (see equation (53 a)). 

It should be pointed out that assuring self-djointness of the coupliea equations in 
the Fock scheme has been possible only due to the use in the derivation ofthe particular 
symmetrized form of the integral (F)I ,  equation (43). If the unsymmetrized form of this 
integral were exploited 

where 

the coupled equations would involve an opgator-let us denote it with 
% = {@'"),,,,+omposed of the following blocks !&'" 
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F .  Mrugala 

Writing these blocks explicitly 

(59 4 

one realizes easily that the coefficient matrices in the operator 3 fail to satisfy the 
self-adjointness relations (29). 

It seems rather unlikely that the lack of self-adjointness of the operator 5 could be 
cured simply by a modification of the scalar product ( I )  (see equation (24)). If one 
defines a product ( I ) ,  

(YIZ), = (sYIZ) = s dx YTZ, 1:: 
with s being a symmetric positive definite matrix, and denotes with 9' the operator 
adjoint to 9 with respect to this product (see equations (25 a), (27), (27 a)) 

(4IW),=@#4l$)s + Wn(=2)CSh +ll5', 
i.e. 9' =s-'gts, one finds easily that in order to guarantee that 9 be self-adjoint in the 
generalized sense, i.e. that 9' = g, the coefficient matrices have to satisfy the following 
relations 

a2=s  a2s, a ,=  -s-'[aTs--2(a~s)'')], 

a, =~-~[a;fs-(a:s)(')+(a~s)'~)]. 

- 1  T 

- 
So, choosing s= (Yz'a}a,a. and replacing the operator 3 with s-'B one would get a2 = I  
in this modified operator but even if there were no first derivative coupling, i.e. a, =0, 
and the matrix a, were self-adjoint, i.e. a, =a,# =s-laXs, the above relations would not 
be satisfied because of the absence of the derivatiyes s(') and d2). 

Despite of not being self-adjoint, the operator 3 may be useful in practice because 
of the relatively simple structure of the first derivative coupling term. This coupling 
does not occur at all in 3 if all the channel internal coordinates are orthogonal to the 
scattering coordinate. Delves' hyperspherical coordhates are an example of such 
coordinates. The coupled equations with the operator 3 expressed in these coordinates 
are solved in the method used by Schatz (1988). 

In fact, all the Fock scheme related formulations of the coupled ordinary differential 
equations proposed so far (Diestler 1921, Stechel et al. 1979, Schwenke et al. 1987, 
Schatz 1988) do involve the operator 3 (or a version of it) and therefore should be 
categorized as non-symmetric ones. 

A symmetrized and simplified version of the formulation by Schwenke, Truhlar, 
and Kouri (1987) will be presented below using the operator 9 derived above, 
equation (53). 

Example 
The generalized coupled equations in the mixed hyperspherical/Jacobi coordinates 

x = ~ , 2 + r , 2 ,  ya=jja=(ra,fa,Ra),  for a=a,p,y. 
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Coupled equations of scattering 23 

Here qa = (r,) and pa = (i,, R,). These are non-orthogonal coordinates with G:4 = ra/x, 
G,""= 1, and GZq= 1. The Jacobians J,, the metrics o,, and the scaling factors c, (see 
equation (21) and (30)) are 

J, = caoa, c, =x(x2 - rz)1'2rz, oa =sin @,a sin 0,. for a = a, f l ,  y. 

The part of the operator (2p/h2)(E - Ha)  occurring in the definition of the matrix e' 
(see equations (51 a)  and (51 c)) now read 

- 2P [ E  - j p ' b ( x ,  jL) - V y ]  - p y ,  
h2 

where 

The bases q"( y,) for a = a, fl, y are chosen as consisting of the eigenfunctions of (the 
bound states of) the respective channel Hamiltonians fii*vib (see equation (8)), i.e. 

Thus, the following expression is obtained for the matrix "@?'(a = a, a') 

where 

The diagonal matrices k,2 and 1: are defined in Section 2. The respective expressions for 
the matrices VF', @', and e' are 

These are the most complex expressions which have to be evaluated to formulate the 
self-adjoint coupled equations in the Fock scheme 
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24 F. Mrugala 

where 
w= 97- + 8- (F)v. 

The precise way of constructing the blocks of all the matrices occurring here follows 
from equations (54), (51 a, c), (55), and (57), e.g. d a a ' = ~ [ 2 ~ ' - ( 2 $ " ) T ] .  As will be seen 
in the next Section, the matrices &(I), @'I, and Y(') are not actually needed in the 
process of solving the equations. Besides the self-adjointness property, the point which 
makes different the coupled equations (61) from those given by Schwenke et al. (1987) is 
the simple form of the matrix 9, equation (56). Replacing (F)V with (CCA)^lr and 
retaining only diagonal blocks of all other matrices in equation (61) one gets the 
respective equations in the CCA coupling schemes (see equation (53 a). Their simplicity 
is apparent too: d = = Y(l) = Y(') = 0 and Y = I. Because of the latter property the 
present form of the C C A  coupled equations seems to be more convenient than that 
given by Schwenke et al. (1987). 

The only other formulation of the coupled equations in a CCA scheme proposed so 
far is that by Top and Shapiro (1982). Because of the coordinates used, however, their 
formulation applies only to two-arrangement-channel cases. 

For the sake of completeness one should mention that the boundary conditions 
(36 a, b) apply also to the solutions of the generalized coupled equations. The only 
adjustment necessary is to make it explicit that there are three sets of internal 
coordinates, y, for a = a, p, y, instead of one, y, and that each basis @ (and 9") is defined 
in its own coordinates y,; e.g., equation (36 b) should in the generalized case read 

( P I ( G a p a L ~ n a ' I a  = ( P K G a P J x p ' I a I x  = xm' 

In the above example of symmetric formulation of the (generalized) coupled equations 
in the mixed hyperspherical/Jacobi coordinates, the conditions (37 a) and (37 b) take the 
following form 

(62 4 t,P'(xm) = m"(x,)6,,,. -na(x,)Kaa', 

d 
Il/""'(x ,) = I?(X ,) - h"(x ,)K""', (62 b) 

where 

na and na are obtained after replacing ma with n" in the formulas for ma and mu, 
respectively. 

To close this Section, let us stress again that the ordinary and the generalized 
Schrodinger equations for atomdiatom reactive scattering can be converted, via the 
close-coupling approximation, to sets of ordinary differential equations which are self- 
adjoint even if curvilinear non-orthogonal coordinates and non-orthogonal basis 
functions are employed. The most complicated coupled equations arise from the 
generalized Schrodinger equation in the Fock scheme which is a result of the inherent 
non-orthogonality of bases involved in the derivation. In particular, the first derivative 
coupling term seems unavoidable in these equations (though this opinion is not 
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Coupled equations of scattering 25 

necessarily shared by others; see, Lill et al. 1983) if they are required to yield strictly 
symmetric reactance matrices irrespective of the overall accuracy ot the employed 
close-coupling expansions. 

4. Numerical methods for solving the coupled equations 
Let us start with presenting a view of the numerous methods developed over the 

years for handling the coupled equations of the quantum theory of molecular scattering 
(see the articles by Gordon, Lester, Light, and Secrest in Methods in Computational 
Physics, 1971,10, and the reviews: Secrest 1979, Wyatt 1979, Thomas et al. 1981, Allison 
1988) in a wider context of methods applicable to linear two-point boundary value 
problems for systems of ordinary differential equations. Systems of N second-order 
equations and separated boundary conditions-N at each boundary point-are 
assumed in what follows. 

A short reminder will be helpful of the general classification of the methods (see, for 
example, Scott (1 973)) according to the technique adopted for imposing the boundary 
conditions. There are so-called: (a)  boundary value and (b) initial value techniques, and 
among the latter techniques (see, for example, Meyer (1973)): (bi) linear superposition 
(version of shooting for linear problems), (bii) invariant imbedding, and (bii)’ Riccati 
transformations techniques. 

In methods employing the boundary value techniques, hereafter referred to as 
global methods, a system of algebraic equations is constructed which gives a finite 
difference approximation to the differential equations over the entire region of 
integration and simultaneously accounts for the boundary conditions. 

The initial value techniques consist generally of replacing a given boundary value 
problem with a number of initial value problems which are next solved in a propagative 
(step-by-step) manner. Hence, the term propagative methods is commonly used. If the 
linear superposition principle is chosen to be directly exploited (as in the shooting 
technique) then the initial value problems are essentially for generating a basis in the 
2N-dimensional space of all solutions of the original differential equations or only in 
the N-dimensional subspace within which the solution satisfying the required 
boundary conditions must lie. 

The initial value problems of the invariant imbedding technique arise as a result of 
treating a given two-point boundary value problem as a member of a family of 
analogous problems with the distance between the two boundaries being a parameter 
of the family-the parameter of imbedding (see Casti and Kalaba (1973) and references 
therein). Relations between the members of the family corresponding to larger and 
larger values of the imbedding parameter, called recurrence relations or addition 
formulas (Allen and Wing 1970,1974, Denman 1971, Nelson and Ray 1979) when the 
parameter changes stepwise, assume a form of some differential equations in the 
limiting case of continuous growth of this parameter. Solutions of the boundary value 
problem on the interval of zero-length, entirely determined by the boundary 
conditions, serve as initial conditions to these equations. 

One of the (N x N matrix) differential equations with respect to the imbedding 
parameter is of Riccati type which indicates that a connection of the invariant 
imbedding technique exists with the Riccati transformation method of solving linear 
boundary value problems (Bellman and Angel 1972, Meyer 1973, Scott 1973). In some 
textbooks (e.g., Meyer (1973), Scott (1973)), the Riccati transformation method has 
been even presented as a particular (non-classical) realization of the idea of invariant 
imbedding, namely, as an implicit imbedding of a given boundary value problem into a 
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26 F.  Mrugala 

family of initial value problems for the same differential equations where the role of 
imbedding parameters is assigned to the set of initial conditions unspecified in the 
original problem. Actually, both the (classical) invariant imbedding and the Riccati 
transformation techniques offer the same prescriptions only for completing solution of 
the problem at the boundaries of the entire integration range. 

The initial value problems arising in any method of category (bii) or (bii)’ may be 
divided into two groups. The basic group consists of four problems which can be solved 
independently of the others and yield certain propagators of solutions of the original 
coupled equations over the interval of integration. Under the term ‘propagator over an 
interval’, a 2N x 2N matrix is meant which connects values of any solution of the system 
of N coupled equations and of its derivative at the endpoints of the interval. The initial 
value problems for determining the propagator are, of course, those which may appear 
in the same form in an invariant imbedding and in a Riccati transformation method. 
The other initial value problems are mostly for determining the solution of the original 
boundary value problem at internal points of the integration range. 

In the linear superposition methods, the role of a propagator is naturally fulfilled by 
a matrix of fundamental solutions of any set of 2N first-order differential equations 
which is equivalent to the original system of second-order equations. Such a 
propagator is called standard hereafter. 

Any difference between the linear superposition and the invariant imbedding 
techniques may be attributed to some properties of the related propagators. The most 
important practical difference between the two techniques concerns their capabilities of 
handling boundary value problems which are described as mathematically unstable or 
stiff (Davey 1983). These are problems with solutions being composed of functions (of 
some elementary solutions of the differential equations) which grow or decay 
exponentially at widely differing rates. Standard propagators generated numerically 
(as solutions of respective linear initial value problems) tend to become singular 
matrices in such cases. This may happen, of course, only because of finite accuracy of 
numerical operations. A counteraction is necessary and it is usually taken in the form of 
some transformations (orthonormalization, triangularization) performed on the 
propagator from time to time in the course of its generation. Procedures ortho- 
normalizing columns of standard propagators continuously and automatically have 
also been suggested (Davey 1983, Mayer 1986). 

No problem with exponential solutions is encountered (though other instabilities 
may arise) in solving numerically the initial value problems for invariant imbedding 
type propagators. 

Concerning interconnections between the various techniques, it has been demon- 
strated also (e.g., Bellman and Angel (1972)) that in application to (linear) boundary 
value problems for three-point (matrix) difference equations the Riccati transformation 
method becomes equivalent to a version of the Gaussian elimination method for 
systems of linear algebraic equations with (block) tridiagonal matrices. Algebraic 
equations of such a structure frequently arise from applying the boundary value 
techniques to boundary value problems for systems of differential equations. This links 
the global methods with the propagative Riccati transformation and invariant 
imbedding methods of solving these problems. 

Among the methods specialized to scattering problems, representative of the global 
methods is the finite difference boundary value method developed by Truhlar and 
Kuppermann ( 1  971) and by Zhang et al. (1 988). It should be mentioned here that the 
sense of the term ‘global method’ is actually broader than that conveyed above. 
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Coupled equations of scattering 27 

Boundary value techniques may be applied directly to the Schrodinger equation as a 
partial differential equation, i.e. not necessarily in conjunction with the close-coupling 
approximation. Such attempts were made in some early reactive scattering calculations 
(e.g. Diestler and McKoy (1968), see also Light (1971)). Moreover, the global methods 
based on finite difference approximations to ordinary or partial differential operators 
bear a strong resemblance to some variational methods employing spacially confined 
(i.e. finite element type) basis functions (see Linderberg et al. (1989)). 

However, the overwhelming majority of the methods tried and finally established 
for use in close-coupling calculations for molecular scattering are of propagative type. 
The chief argument in favour of propagative methods has been the fact that our interest 
in a given scattering process is actually focused on the fragmentation stage and the 
relevant information may be obtained if the wavefunction for the process is only known 
in respective asymptotic regions of the configuration space. Thus, any costs would be 
superfluous (storage requirements and/or amount of computational work) associated 
with determining solutions of the coupled equations explicitly within the entire 
scattering range. While it seems not always possible to avoid such costs in the global 
methods they can be eliminated quite naturally when a propagative technique is 
employed. One simply confines oneself to determining respective propagator (or even a 
part of it) over the scattering range. 

No doubt, the development of propagative methods for scattering was stimulated 
by the formulation of the close-coupling theory of ro-vibrational energy transfer in 
non-reactive molecular (mostly, atom-diatom) collisions (for a review, see Lester 
(1976)). Two features of the coupled equations problems arising in this theory have been 
particularly important: (i) the simple form of the equations-ordinary differential 
equations of second-order with (i)’ no first derivative term and with (i)” potential type 
coupling elements which vary rapidly in a not large and in part classically inaccessible 
condensation region and change rather slowly outside this region of scattering 
coordinate; (ii) the need (caused by anisotropy of interaction between colliding 
partners) for inclusion of a large number of equations into a system, among them also 
equations corresponding to closed collision channels. 

Because of participation of the closed channels and the existence of the non- 
classical regions the problems belong to the mathematically unstable ones. The 
invariant imbedding technique seems the ideal remedy for instability of the scattering 
problems. Indeed, resorting to this technique resulted in developing methods which are 
now among the most popular in the field, such as the log-derivative method of Johnson 
(1973). Even more widely used (since designed at once for more general problems) is the 
R-matrix propagation method of Light and Walker (1976b); see also: Zvijac and Light 
(1976), Stechel et al. (1978,1979), Schneider and Walker (1979), Wyatt (1979), Kulander 
and Light (1980), Garrett and Truhlar (1981), Lill et al. (1983). Classical examples of 
numerical procedures based on the idea of invariant imbedding are: the amplitude 
density functions method which was used in the first accurate multichannel calcul- 
ations for (a model of) molecular collisions reported in 1966 by Secrest and Johnson 
(see also Secrest (1971)) and the state path sum method of Manz (1974tlater modified 
and renamed to the S-matrix propagation method (Hauke et al. 1980). Each of the 
methods quoted generates a definite propagator of solutions of the coupled equations. 
A propagator is, of course, the matrix R in the method of Light and co-workers. The 
propagator associated with the log-derivative method, strictly, with its later generaliz- 
ations, is called the L matrix (or propagator). Hence, the alternate name-the L-matrix 
propagation method-appears in Section 5. 
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28 F. Mrugafa 

Though usefulness of the invariant imbedding technique in treating the coupled 
equations problems for molecular scattering was realized quite early there was also an 
intensive search in the 1970s for more standard procedures suitable to these problems, 
i.e. for methods generating standard type propagators and using stabilizing transform- 
ations of some kind. These are the methods reviewed by Secrest (1979) and recently by 
Allison (1988) under the heading ‘solution following’ methods. 

Besides the instability a large size of the problem has been an element of difficulty in 
devising adequate numerical methods for naturally increased efficiency requirements. 
The algorithms constructed consist of operations which serve essentially the following 
two purposes: (a) determination of propagators (of standard or invariant imbedding 
type) over subsequent sectors of integration interval, and (b) assembling of the sector 
propagators according to respective (the ordinary linear superposition or invariant 
imbedding recurrence) relations to get the corresponding global propagator over the 
entire interval of interest, For efficiency, it is desirable, of course, that the sector 
propagators can be evaluated as accurately as possible with few operations and 
simultaneously that the total number of sectors cannot be large. The obvious thing to 
do for accomplishing that is to take advantage of the characteristiqbehaviour of the 
potential coupling, i.e. of the feature (i)” of the problems. In that way, the two 
approaches have arisen to the determination of sector propagators (see again the 1979 
review by Secrest): the ‘approximate-potential’ approach which allows relatively large 
sectors in the regions of slowly varying potentials and the ‘approximate-solution’ 
approach which is particularly appropriate in the nonclassical regions. In the former 
approach, the sector propagators are determined from analytical solutions of 
differential equations obtained by approximate decoupling of the original equations 
within particular sectors and by insertion of simple reference potentials. In the latter 
approach, the propagators are determined from algebraic equations which come from 
a discretization, i.e. an approximate treatment mostly of the derivative operator in the 
original equations. The R-matrix propagation method and the (original) log-derivative 
method are representative examples of the two different approaches. 

Having recapitulated Secrest’s well-known classification of the propagative 
methods for molecular scattering calculations (as being based on the two criterions: the 
type of the propagator generated in a given method and the approach taken to its 
evaluation), let us recall finally the work in 1981 of Thomas et al. comparing the 
performance of these methods on some representative non-reactive collision test 
problems. This comparison revealed superiority of the log-derivative algorithm of 
Johnson to any other purely approximate-solution procedure available at that time. In 
the non-classical regions, this algorithm performed also better than all the 
approximate-potential methods tested. High efficiency of the log-derivative method, in 
the original version applicable only to the simplest coupled equations problems 
describing usually non-rearrangement collisions, has been an inspiration for ex tending 
applicability of this method to more involved problems arising in the theory of reactive 
scattering and half-collision processes. Reviewing the research done on this matter and 
presenting some new contributions are the goals of the next Section. 

In the first place, a suitable analytical frame for construction of generalized log- 
derivative algorithms had to be provided. This is the L-matrix formalism which is 
reviewed in Section 5.1. 

A complete set of initial value problems is presented, in the discrete (recurrence 
relation) form, which in addition to the basic L-propagator (and the logderivative 
matrix as a part of it) also allow determination of the actual solution of a given coupled 
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Coupled equations of scattering 29 

equations problem at any point within the range of integration. Such information is not 
necessary, as mentioned above, if the solution represents the total wavefunction for the 
collision system, i.e. if the problkm being solved comes from applying the close- 
coupling approximation to the appropriate, ordinary or generalized Schrodinger 
equation. However, some auxiliary bouhdary value problems for coupled ordinary 
differential equations which account for only a part of all transitions possible in a given 
reactive collision system arise (see, for example, Schwenke et al. 1988, 1989) when 
variational methods are applied to respective generalized Lippmann-Schwinger 
equations. Solutions of these problems enter various matrix elements (listed, for 
example, in Mrugala (1990)) which constitute the Schwinger or the Schwinger-like 
variational expressions for the scattering matrices. Knowledge of these functions along 
the entire integration range is usually necessary to start evaluation of those matrix 
elements which involve nonlocal operators. 

Matrix elements which are single integrals with integrands including solutions of 
boundary value problems for homogeneous or inhomogeneous coupled equations can 
be evaluated in the course of the generation of propagators for these equations, 
avoiding the step of explicit determination of the solutions. Appropriate recurrence 
relations for accumulation of such integrals over subsequent sectors of the integration 
interval simultaneously with addition of the sector L-propagators are also presented in 
Section 5.1, in connection with evaluation of the first- and second-order transition 
amplitudes for half-collision and collision mediated processes and in connection with 
evaluation of the energy derivative of the scattering S matrix. The latter quantity 
appears in the definition of the collision lifetime matrix (Smith 1960a) which has proved 
useful in the analysis of resonances in multichannel collisions (Kuppermann and Kaye 
1981, Bisselinget al. 1987, Kaye and Kuppermann 1988, Darakjian et al. 1991) and half- 
collisions (Mrugala-1988, 1989, Parlant et al. 1990). A relatively new trend in the 
lifetime matrix calculations is the direct evaluation, i.e. omitting numerical differenti- 
ation, of the energy derivatives of the scattering matrix (Walker and Hayes 1988,1989, 
Darakjian and Hayes 1990). In Section 5.1, this idea is viewed in the context of the more 
general task of evaluation of first-order transition amplitudes of free-free type. 

A part of Section 5.1 is devoted to a description of how the coupled equations, in 
particular those derived from the generalized Schrodinger equation in the Fock scheme 
(i.e. with the use of non-orthogonal bases), should be prepared for numerical treatment, 
i.e. transformed with preservation of self-adjointness property to representations which 
are most convenient for discretization. 

In Section 5.2, the generalized log-derivative algorithms are presented for 
evaluation of the propagator L, for determination of solutions of some basic boundary 
value problems for homogeneous and inhomogeneous coupled ordinary differential 
equations, and for evaluation of some integrals involving these solutions. The 
algorithms are written in the version appropriate for equations in the diabatic 
representation and a (new) convenient way of their adaptation to equations in so-called 
quasi-diabatic representations is described. All algorithms presented have a hybrid 
approximate-solution approximate-potential character and are easily convertible to 
purely approximate-solution versions. Computational experience gathered so far with 
the various generalized algorithms is summarized. 

In Section 5.3, a comparison of the generalized logderivative algorithms is made 
(a) with algorithms of the R-matrix propagation method and (b) with the renormalized 
Numerov algorithms (being here a collection of invariant imbedding algorithms 
derived on the basis of the well-known Numerov scheme and on the basis of the 
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30 F.  Mrugaia 

schemes adapted to the Schrodinger equation as proposed by Raptis and Allison (1978) 
and by Ixaru and Rhea (1980)). 

5. The Gmatrix propagation (generalized log-derivative) method 
5.1. The L-matrix formalism 

In order to describe the invariant imbedding -matrix propagation method in 
application to the coupled equations derived in Section 3 one should start by 
introducing appropriate standard propagators of solutions of these equations and with 
collecting some basic facts concerning the standard propagators. For this purpose, it 
will be convenient to have the equations rewritten in a first-order differential equation 
form. 

Let 

DX = 0, (63) 
with 

d 
X = ( t ) ,  and D = J - + M ,  dx 

be such a form, where D is a self-adjoint operator, i.e. the 2N x 2N coefficient matrices J 
and M satisfy the relations J =  - JT and M=M'+J( ' ) .  The most general form of 
J considered here will be 

J = ( $  b), 
with j, and j being N x N skew-symmetric and symmetric positive definite matrices, 
respectively 

j, = - j:, j = j'. (63 d 1 
Equivalence of equation (63) with equation (25) is established, for example, by setting 

The following operator D corresponds then to the coupled equations in the Fock 
scheme (equation (61)) 

where 

9 = 2 ( d  + W). 

The matrix of fundamental solutions of equation (63) Q(x, x') 

which is normalized to the unit matrix at a point x' 

(: :)y 

o q x ,  x') = 0, Q(X', x') = 
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Coupled equations of scattering 31 

is called a standard propagator of solutions of the coupled equations (equations (63) or 
(25)). Any solution X(x) of an inhomogeneous equation involving the operator D 

D X = K  (66) 

(67) 

~ ( b ,  a)= Q(b, x)J-’(x)Y(x) dx. (67 4 

is propagated between endpoints of an interval [a, b] according to the relation 

where 
X ( b )  = Q(b, u)X(U) + o(b, a), 

1: 
The inhomogeneity term Y is a 2N x 1 matrix of given functions. Obviously, the 
propagator i2 itself satisfies the above relation giving the following group property 

Q(x”, x’) = Q(x”, y)Q( y ,  x‘). (68) 
(Here [a, b] = [ y, x’] and x’ is an arbitrary point.) A direct consequence of this 
property is 

O(XN, x‘) = Q(x“, y)o(  y ,  x‘) + O(X”, y),  (69) 
for any YE[x’,x’’]. In the limit of y+x”, one verifies simply that o(y,x’) satisfies 
equation (66) 

Do(x, x’) = Y, o(x’, x’) = 0. (70) 
(Here y is renamed to x). Moreover, the property Q(x’, x”) = Q- *(x”, x’) is implied. 

From the Lagrange identity (equation (27)) applied 
symmetry relation results for Q 

QT(x’’, x’)J(x”)Q(x”, x’) = J(x’). 
So, in the case of 

to D( = Dt) ,  the following 

(71) 

J=( > I  0 I) ’ 

Q is a symplectic matrix. Definite advantages may be taken of this property of the 
standard propagator in designing algorithms for solving the coupled equations. 
Therefore it is useful to have equation (66) converted to a form 

ax=% (72) 

B = ( T - ‘)=DT - 

x = TX = (3, 
- d  
dx 

‘ = J - + M ,  

E= ( T -  ‘ )Ty,  

which involves self-adjoint operator a with 

0 1  
]=(>I 0). 

This forms of can be obtained by means of the following transformations T 

I 0  
T=TlT2 ,  with T I = r 1  ’), and I). 

0 tl (73) 
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32 F. Mrugala 

by setting t1=j'I2 and t 2 - 2 ~  -L*- l '  jo+j -1/2sj+1/2,  where s is a symmetric matrix. 
Choosing s appropriately, one can get also the following symmetric form for the 
matrix n;i 

(74) 

For example, in order to convert the operator (FID of equation (64) to the desired form 
one should use the transformation T with t, =Y1I2 and t 2 = $ 9 - ' ( F + 9 ( l ) ) ,  

obtaining the following expressions for w and c 

(Note, the matrices d('), %?(l), and 
Obviously, the second-order matrix differential equation for the function $, 

obtained after elimination of in equation (72), involves the first derivative coupling 
term 2cd$/dx. This term is eliminated by converting the operator 0' to the form 

do not appear here.) 

Dz=(T;1)Td7;'=( 0 I d  ) -+( w , O  ) 
> I O d x  0 I '  

where 

w&) = tyx; X)w(x)t(x; 2). 

The transformation Tz used to this end has the structure of T,  with t, = tT(x; X), where 
t(x; X) is the orthogonal matrix which satisfies the equations (Smith 1969, Baer et al. 
1980) 

I- + c t(x; X) = 0, t(2; X) =I. (d", 1 (77) 

In what follows, the operators D, and with 

j=( o r  ), 
-I  0 

and n;r given by equation (74) will be called respectively, diabatic and non-diabatic 
forms (representations) of the operator D. 

The transformation D+d defined in equation (72 a) implies the following relation 
between the respective standard propagators 

Let us proceed 
propagator L 

Q(x", x')= T -  '(X'')ST(X", x')T(x'). (78) 

now to a reformulation of the above relations in terms of the 
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Coupled equations of scattering 33 

which is defined (Mrugala and Secrest 1983a) through the following operation on the 
blocks of the standard propagator 52 

L(x’,x’/) = E[S~(X”,X’)I, (79) 

provided det CLz(x”, x’) # 0. Useful properties of the operation are 

(b) @(@[Q]) = 52, 
0 1  

(a) c[f l  = r, where r = ( I o), 

(c) Z[TQkT] =(Z[a])-I, ( d )  L[Q-l]rc[Q]r. 
First of all, one gets the following form of the relation (67) for propagating solutions 

of equation (66) 

where 

and L[Q] denotes 

Further on, using equation (80 d )  one determines immediately how the propagator L 
behaves under reversal of the direction of propagation. The symmetry relation satisfied 
by the fundamental matrix 0, equation (71), translates into the following relation for 
the matrix L 

It becomes clear now that the advantage of having equations (63) and (66) in the 
form with 

J =  

lies in that the L propagator is a symmetric matrix in this case (the sign in the respective 
relation for the off-diagonal blocks, L, = - LT is not mentioned). 

Concerning the symmetry of the propagators, let us stress again that the above 
relation is valid only when equation (25) involves a self-adjoint operator 9. If 9 # @ 
(as in the majority of cgses of operators resulting from the CCA schemes and also in the 
case of the operator 3 involved in the unsymmetrized Fock coupled equations, see 
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34 F.  Mrugaja 

equation (60)), then also the operator D of equation (63) is not self-adjoint, usually 
because the coefficient matrix M no longer satisfies the condition stated in equations 
(63). In such cases, the relations (71) and (82) should involve, in place of the propagators 
QT and LT, transposes of the respective propagators for adjoint equations, $2’ and +LT. 
Though it may be proper to assume that locally, i.e. in small intervals [x’,~’’], the 
propagators ,52(x’l, xr)  and ?L(x‘, x”) do not differ much from the propagators Q(x”, x’) 
and qx’ ,  x”), respectively, (the derivation oflhe algorithm given by Stechel et al. (1979) 
for equations involving a non-self-adjoint 3-type operator actually relies on such an 
assumption) this certainly is not always true globally, i.e. for the propagators over the 
entire range [x,, x,]. 

The counterpart of the relation (68) for the matrix L, obtained also by a 
straightforward exploitation of the involutional property (80 b) of the operation L, is 

qx’ ,  x”)= L{L[L( y, x”)]L[L(x’, y)]}. (83) 

Written explicitly, it gives the recurrence relations (Mrugala and Secrest 1983a) for 
‘addition’ of the blocks of the L propagators acting within two adjacent intervals [x’, y] 
and [y ,~” ] .  Let us list here only the basic relation-for the block L4 

L4(x’, x”) = L4( y, x”) + L3( y, X”)l(X’, y, X”)L*( y, X”), 

l(x’, y, x”) = [L4(x’, y) - L,( y, x”)] - (83 4 

The respective recurrence relations for the blocks of the matrix 

have been published by Mrugala (1985). That for P reads 

P(x’, XI’) = P( y, x”) - L3( y, x”)I(x’, y, x”)[P(x’, y) - Q( y, x”)]. (84) 

In the limit of y+x“, the differential equations with respect to the imbedding 
parameter-here y-results from the above recurrence relations for the blocks of the 
matrices Yx’, y) and l(x’, y) (see Section 4); the nonlinear equation-for the block L,- 
reads 

Ai denote blocks of the matrix A = - J -  ‘ M .  These differential equations (listed in full 
by Mrugala and Secrest (1983a), see also Mrugala (1980)), together with the initial 
conditions L(x’, x’) (= lim c[s;Z(x’ + E,  x’)]), 

& + O  

and f(x’, x’), are counterparts of the linear initial value problems connected with the 
‘addition’ relations (68) and (69) for the matrices D and o, i.e., of equations (65) and (70), 
respectively. 

Whereas the standard propagator 52 and the matrix o are defined through the 
initial value problems (65) and (70), respectively, the propagator L and the matrix 1 
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Coupled equations of scattering 35 

appear to be directly related to the following two-point boundary value problems 
involving the same differential operator D 

and 

I/f$,..(x’) = $:.,.?(x”) = 0. (86 b) 
Indeed, applying the propagation relation (81) to the solutions of these problems one 
gets 

and (87) 
Q(x’, x”) = A:,,,,(x’), P(x’, x”) = A2,x,,(~”). 

The connection with the above boundary value problems could have been taken, of 
course, as the feature defining the matrices L and 1 instead of the definitions given in 
equations (79) and (81 a). 

Obviously, there is a close relation between the propagator L(x’, x”) and the matrix 
Green function G,,,-(x, y) for the operator D 

which satisfies the conditions 

G;,,,, with i =  1,2,3,4 denote N x N blocks of G,,,,, 

G=(“‘ G 3  “’> G4 ’ 

The relation can be easily derived from the expression for Gxfx,, in terms of the solutions 
X:,.. of the problems (86,86 a) 

X&(x)( W -  ‘)‘[X:,..( y)]’, 
X:,..(x)W- [X,,*,( y)]T, 

for x < y ,  
for x > y, G x Y k  Y )  = 

where 

W= W,= l(X;xrr, X:,..) = [x;,,t(x)]TJ(~)X:,..(~) = const, 

(see equation (27 a)). Namely, using equation (87) one gets 
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36 F. Mrugala 

Moreover, from the expression for the solution X:,,,, in terms of Green function Gxrx,,, 
X,O,,, = G,,,,, Y (written abbreviatedly), the following formula results for the matrix 

- j - ‘(x’) 
l(x’, x”) = 

( I ) denotes here the same scalar product as defined in equation (24) but with the range 
of integration confined to the interval [x’, x”]. Use has been made in equations (89) and 
(91) of the self-adjointness property of D. If D were not self-adjoint, but with the 
coefficient matrix J still in the form (63 c, d ) ,  the formula (91) would involve, instead of 
the functions X:,,,, the solutions +X:,.. of equations (86,86 a) with the operator Dt 
standing in place of D. 

For determining the propagator L(x’, x”), it is convenient to have the boundary 
value problems (86,86 a) converted to appropriate integral equations 

X$,..(x) =refX$xrr(x) - refCx,xr,(x, y)“’M( y)X;,x,r( y) dy, for a = +, -. (92) J:; 
Such equations involve solutions refX$s,, of analogous problems with a reference 
operator refD( = refD+) 

and the respective Green function refGx.x.. for the reference operator and the residual 
operator ‘“”M, feSM=M-,efM. Obviously, it is of practical value that the reference 
operator refD be such that the corresponding refL part of L is easily obtainable and has a 
simple form. Thus, it is worth noting that for D’s in the diabatic representation, 
equation (76), the operator refD may be chosen in the form 

0 I d  0 0  
= + - I  o ) z + ( o  I)’  

giving ,efL as simple as 

(94) 

(94 4 

This choice was made in the derivation of the original log-derivative algorithm (see 
Section 5.2) and has been one of the factors determining the particular simplicity of this 
algorithm. 

Since practical aspects have just come into consideration this is a good moment for 
a comparison of the L-matrix formalism with formalisms based on other invariant 
imbedding type propagators. The R-matrix propagator may be introduced through the 
relation 
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Coupled equations of scattering 37 

which comes, just as equation (81) for the matrix L, from a simple rearrangement of the 
standard relation (67). Provided det OZ,(b, a) # 0, one defines (see equations (79 a), (80 a), 
and (81 b)) 

R(u, b) = Z.[TQ(b, a)f], 

r(a, b) = &[CTQ(b, a) r ] ro(b ,  a). 

The propagator actually used in the method of Light and co-workers (see Section 4) is 

the minus sign serves only to emphasize the connection of the method with the 
R-matrix theory of Wigner and Eisenbud (see, Lane and Thomas (1958)). 

Another rearrangement of the relation (67), originally proposed by Denman (197 1)  

and possible if only det 04(b,  a) # 0, introduces the propagator (see equations (80 a), 
(81 b)) 

U(a, b) = 0CW, 41, (96 4 

Nu, b) = 0 4 l r o ( b ,  4, (96 b) 

and the matrix 

where 

f r = f E f ,  and fl,=r^r,f. 
Blocks of the propagator U are most directly related to the matrices of transmission 
and reflection coefficients generated in the amplitude density function method and to 
the S-matrix propagator used in the method of Manz and co-workers (see again 
Section 4). The connection of the propagators R and U with the propagator L (over 
intervals for which these propagators simultaneously exist) is given by the formula 

L= R - = rQu), (97) 
and the matrices r, u, and 1, necessary for inhomogeneous equations, are connected as 
follows 

1 = - R- ‘ r  = r@, [Ulu. (97 4 
In order to assess the usefulness of the three propagators in the construction of 
algorithms one has to compare the initial value problems associated with these 
propagators. Concerning discrete forms of the problem, i.e. the respective recurrence 
relations, the following two facts should be noted: (i) the structure of the relation for the 
matrix R is the same as that shown in equation (83) for the matrix L, i.e. 

R(x’, x“) = Z{@[R( y, x“)]Z[R(X‘, y)]} .  (98) 

Identical structures have also the respective relations for the matrices r and 1; (ii) the 
relation for the matrix U 

W ’ ,  x” )=O{f lC~(y ,  X”)l0CU(X’, Y)l}, (99) 
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38 F. Mrugala 

is more complex since it involves more matrix multiplications than equation (83 a)  
when written explicitly for the respective blocks of U .  The limiting continuous, i.e. 
differential equation, forms of the recurrence relations are for all the three propagators 
practically the same. The blocks of the coefficient matrices A( = - J - ’ M )  and 
B ( = J - ’ Y )  occurring in the equations for the matrices L and 1 have only to be 
renumbered appropriately in order to make these equations valid for the matrices R 
and r or U and u. More essential are some differences that occur between the initial 
conditions to the particular equations. While the condition (85) and the respective 
condition for the matrix R (looking similar, i.e. A, appears in place of A,) are rather 
awkward to start numerical integration of differential equations, the condition for the 
matrix U is as simple and convenient as 

U(X’, x’) = (; 3. 
Obviously, the same initial conditions have to be used in order to start the 
recurrence process with the respective relation, equation (83), (98), or (99). In this case, 
however, the infiniteness of the matrices L(x’,x’) and R(x’ ,x’)  poses no practical 
difficulty (see Section 5.2). Thus, the propagator U might be preferable to the two others 
only if the respective initial value problems were to be solved in their differential 
equation forms. The use of the recurrence relations however, opens, more possibilities 
in the construction of algorithms as there is much more freedom in the sectorization of 
a given integration interval and a variety of procedures may be tried for the evaluation 
of required sector propagators. In view of the fact (i) stated above, differences in the 
determination of the respective sector propagators may only lead to a discrimination of 
the L-matrix and R-matrix propagators in practice. In this context, it is worth noting 
that the simple reference operator (94) would not be acceptable if boundary value 
problems appropriate for the matrix R ,  i.e. equation (86) with the conditions 

were to be solved instead of the problems (86,86 a). Indeed, the standard propagator 
(see equation (65)) for equation with in the form (94) 

cannot be rearranged to the R-matrix with the formula (95a). Thus, despite of the 
simple connection between the R and L propagators (equation (99)) and the identical 
structure of the respective recurrence relations it would not be possible to construct an 
approximate-solution type algorithm as simple as the original logderivative al- 
gorithm if the propagator R were employed instead of L. 

In connection with the transition amplitudes for half-collision and for collision 
mediated processes, defined in equations (14,15), the following integrals are considered 
within the L-matrix formalism (Mrugala 1989) 
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Coupled equations of scattering 39 

where 4 and @are N x 1 matrices of given functions. Obviously, the integrals J:.,.. with 
a = +, - are directly related to the quantities Q(x’, x”) and P(x’,x’’) if the inhomogene- 
ity in equation (66) is 

J ;,.. = j(x”)P(x’, x”), J :,.. = - j(x’)Q(x’, x”). ( 102) 

So, the recurrence relation (84) can be applied for accumulation of the J-  integrals 
evaluated over subsequent intervals of the integration range. Analogous relation for 
the integral J,”.,.. can be derived by exploiting the following linear superposition 
relations for the solutions of the problems (86,86 b) on intervals [x’, x”], [x’, y ] ,  and 
[ y ,  x”1, (x’ d y d X’’) 

$Gx,,(x) = ( a a ,  + + da, O)@:,y(x) + +rX.y(x)dGx,4 Y), for XECX’, YI,  (103 a) 

Gx,,(x) = (ha, - + a a ,  d$;x,,(x) + +&,(x)Gx,4 Y ) ,  
for x~[y,x”] and a= +, -,O, (103 b)  

and the following connections between the functions @.,..( y )  and the propagator L, the 
matrices Q and P for the intervals [x’, y ]  and [ y ,  x”] 

c - L&’, Y)l,  for a= +, 
+“,.,4 Y)  = l(x‘, Y ,  x“) L,( Y,X”), for a= -, (104) i [ - P(x’, y) + Q( y ,  x”)], for a = 0, 

(see equation (83 a) for the definition of 1). The relation reads 

J $,- = J $, + J $ - [P(x’, y) - Q( y ,  x”)ITIT(x’, y ,  x”)[J;, + J&,,]. (105) 

Overbar denotes that the respective integral is obtained after replacing 4 with 6 in 
equation (100). 

Obviously, a number of other integrals involving solutions of the basic boundary 
value problems (86,86 b) may be considered and treated in a way analogous to that 
presented above (see Mrugala 1990). Here, let us comment only on the following 
integrals 

J:$. = ( I & ~ , , ~ K ~ & , , ) ,  for a, /3 = + , -, (106) 

where K denotes an N x N matrix of given functions of x. These integrals arise generally 
when the L-matrix formalism is applied to the determination of free-free type transition 
amplitudes. The Born and the distorted-wave Born approximants to the scattering 
matrices are typical examples of such amplitudes. In terms of integrals of the type (106), 
one can also express the derivatives with respect to energy of the blocks of the L 
propagator which are the quantities actually needed for determination of the energy 
derivatives of the scattering matrices (see equation (112)). To make this evident, the 
following two facts should be noted. Firstly, as in the case of the integrals J:.,.. for 
a= +, -, which were shown above (equations (102), (87)) to be related to the solution 
X,”,,,, of equation (86) with the inhomogeneity term 
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40 F.  Mrugala 

the integrals JS!,. can be related to analogous solutions of equation (86) with 
inhomogeneity terms 

K O  
P = ( ~  o)x<.x,r, for b= +, -. 

Denoting these solutions as 

with D = + , -, and the matrices A,”!;B!.(x’) and A,”!;B!.(x”) as Q@(x’, x”) and P@(x’, x”), 
respectively, one gets 

(108) J;;B = j(x”)P@(x’, x”), J:;! = - j(x’)Q@(x’, x”), for p = + , - . 

Secondly, differentiating equations (86,86 a) with respect to the energy E and taking 
into account that the operator D depends on E only through the coefficient matrix a, 
(see equation (63 e)) one realizes that the functions (d/dE)X$,.(x) are examples of the 
solutions X,”!:!(x) of equation (86) with the inhomogeneities Y’ involving the matrix 
K = (d/dE)a,. In consequence, the following equality holds in this case 

Q+(x’, x”) Q-(x’, x”) 
P + (x’, x”) P - (x’, x”) 

d 
dE 
-ax’ ,  x”) = 

Necessary .recurrence relations for accumulation of the J a y @  integrals over 
subsequent sectors [x’, y] and [ y, x”] result, of course, from applying the relations 
(103 a, 104) to the functions $$x..(x) and $<.,..(x) for a,P= +, -. Being aware of the 
connections (108) and (109) one can obtain the same result also by differentiating with 
respect to E the relation (83) for the respective blocks of the matrix L(x’,x”) and by 
exploiting the symmetry, equation (82). 

It is not difficult to establish how the L-matrix propagator and the quantities 
related to it are affected by the transformations performed on the coupled equations in 
equations (72 a, b). Namely, exploiting the form of the corresponding transformations 
on the standard propagator, equation (78), and defining L(x’, x”) = L[fi(x’’, x’)] (see 
equations (79,79a)), one finds out that the following relation holds when the 
transformation T has the form TI (see equation (73)) 

and the following in the cases of T being in the T, form 

+ QX‘, x“). L(x’, x”) = (rt2(*“ 0 
-tJx’’) ”> 

Concerning the matrix 

one finds out that it is not affected by transformations of the T, type, i.e. 
l(x’, x“) = qx’, x”), and that the relations appropriate in the T = Tl cases read 

Q(x’, x”) = t; ‘(x’>Q(x’, x”), P(x’, x”) = t; ‘(x”)P(x’, x”). (110a) 
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Coupled equations of scattering 41 

The corresponding transformations on the J integrals can be found easily on the basis 
of the respective relations which take place in the T = TI and T = T, cases between the 
solutions of the problems (86,86 b), X:jx, ,  for a= + , -, 0 (or X:!!!, for j? = +, -), and 
the solutions RTXr, (or x:!!!,) of the problems with the transformed operator d 
(see equation (72 a)) and with the transformed inhomogeneity terms 

One notices, for example, that the integrals J +  and J-  transform like the matrices Q 
and P, respectively, except for the fact that counterparts of equations (1 10 a) for these 
integrals involve matrices tT in place oft;'. 

Finally, a comment is in order on the role of the three forms of first-order differential 
equations, introduced at the beginning of this Section, in solving the equivalent second- 
order matrix differential equation (25). The basic is the form (63) in which 1 = $(l). For 
this equation, the forth block of the L propagator, L4(x', x), has the meaning of the log- 
derivative matrix of any set of N linearly independent solutions 

which vanish at the point x', i.e. L4(x', x) = +(')(x)[$(x)] - ' when t,h(x') = 0. Knowledge 
of the log-derivative matrix for the interval [x', x"] = [xo, x,] suffices for evaluation of 
the matrix K when the scattering boundary conditions are imposed as described in 
Section 3 (where the scattering coordinate was assumed to have the property of 
hyperradius. In the reaction coordinate formulations, the boundary conditions are 
imposed in a way requiring determination of all blocks of the propagator; see, e.g., 
Light and Walker 1976b). The following formula for K results from the conditions (37 a) 
and (37 b) (assuming g"(x,) = Sna(x,) = I") 

K = [li- (E4 + d)n] - [k- (E4 + d)m], 

C4 = L4 + A + C. 

(1 12) 

(1 12 a) 

where 

In the case of the coupled equations in the Fock scheme derived in the previous section 
(equations (61,62 a, b)) 

5 
2x, d(x,)= --I, and ~ 4 ( ~ o , ~ m ) = € , 4 ( ~ 0 , ~ m ) + % ( x m ) .  (1 13) 

Having determined the matrix K and the solution +X,x,(x) at points x within the 
interval [x,, x,] one can easily evaluate the corresponding (standing wave) scattering 
function (see equations (37 a) and (62 a)) within this interval 

In order to calculate the transition amplitudes Kb and KEb for the collision related 
processes (see equations (14) and (15)) one has to evaluate, in addition to the log- 
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42 F. Mrugala 

derivative matrix, the integrals JXOx, and j&,, with t#J = t#Jb and ;b = $', respectively, and 
the integral J,",,, 

Kb = - [h-(E4 + d ) ~ ]  - J- ,  (1 15) 

(1 16) 
h2 
2P 
- K'bb= Jo - J-T[(E, + d - hn- 1) -  ']TJ-. 

It should be remembered, of course, that Jo, J-, j-, and L, refer to the interval [xo, x,] 
and all the other matrices occurring in the above formulas are evaluated at the point 
xca. 

As already mentioned, the log4erivative matrix and, in general, the propagator L 
connected with the basic form of equation (63) are not symmetric matrices. So, if this 
propagator were employed to generate numerical solutions of the coupled equations, 
not much could be practically profited from self-adjointness of these equations. The 
two other forms of equation (63) introduced, the diabatic and the non-diabatic ones, do 
have the property of being connected with symmetric L propagators. Actually, the 
matrix ~4(xo ,x , )  defined in equation (112a) is the fourth block of the propagator 
Qx,, x,)for the non-diabatic equation (72) and, in particular, for the equation with the 
operator (F@ (see equations (64), (72 a), (74), (75), and (1 13) and the relations (1 10) and 
(111) where, in the case of the Fock equations, tl(x"=xm)=I and t,(x,)=$F(x,) 

The non-diabatic form of equation (63) (equations (72), (72 a), (74)) is closer than the 
diabatic form (equation (76)) to the original formulation of the coupled equations 
(equation (25)) in the sense that $=t+b if a,-I. Essential properties of the basis 
originally chosen, e.g. its ability to describe the change of bonding between atoms in the 
course of reaction (especially when natural reaction coordinates are used), remain 
unaffected. This may sometimes facilitate interpretation of solutions of the coupled 
equations, giving an insight into the reaction mechanism, but more important seem to 
be some practical implications. Namely, in serial calculations, for one system at many 
collision energies, there is a possibility of saving computational time (at lower energies) 
by contracting the basis length and by reusing an appropriate part of energy- 
independent information stored in previous calculations (Walker and Light 1976b, 
Parker et al. 1980, Thomas et al. 1981). A much smaller amount of information can be 
reused after basis contraction if the coupled equations are converted to diabatic form 
(Mrugala 1987). 

On the other hand, there are some inconveniences associated with numerical 
treatment of the coupled equations in a non-diabatic form. The simplest and most 
efficient of the discretization schemes of second-order differential equations, such as the 
Numerov scheme, are neither directly applicable nor easily adaptable to situations 
when first derivative coupling terms are present. Therefore direct discretization of 
coupled equations in non-diabatic representations was rarely attempted in designing 
codes for scattering calculations (see the review by Garrett and Truhlar (1981) and 
Nguyen-Dang et al. (1989) for the latest attempt). It is becoming a popular practice now 
(see, for example, BaEic et al. (1990)) to replace the non-diabatic form of the coupled 
equations with a quasi-diabatic one, called also locally diabatic (Kupperman 1981) or 
diabatic-by-sector (Lepetit et al. 1986a, b). This means representing the non-diabatic 
operator (equations (72a), (74)) by a sequence of diabatic operators {Dj,}f=l 
(see equation (76)) 

= g(x,)). 

M 

p =  1 
d(x)= 1 [ T ~ p ( ~ ) ] T D j p ( ~ ) T ~ P ( ~ ) O ( ~ - X P - h p ) O ( X P + h p - ~ ) ,  (117) 
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Coupled equations of scattering 43 

with X, for p = 1,. . . , M being midpoints of a set of M sectors [X, - h,, Xp + h,] which 
cover the entire integration range [ x , , ~ , ] ,  i.e. X p = X p - l  + h P p l  +h,, x o = x l  -h l ,  and 
x ,  =x,; 0 denotes the step function: 0 ( x ) =  1 (0) for x > O  ( x b 0 ) .  

5.2. The generalized log-derivative algorithms 
In this subsection, the algorithms will be presented which have been constructed on 

the basis of the relations given in the previous subsection for solving the boundary- 
value problems (86,86 b) in the diabatic representation, i.e., with D = D,  (see equation 
(76)), and in the quasi-diabatic representation, i.e., with D = d (see equation (72), (74)) 
and d being represented in the form (1 17). The inhomogeneity term will have in both 
cases the form 

(or the form (108) when the integrals (106) will be dealt with). The algorithms will be for 
evaluation of the propagator Y x ’ ,  x”), of the integrals J&( = P(x’, x”)), J;:; 
(= P-(x‘, x”)), and J$.,.., and of the functions $;x.t(x) and $$.,..(x) at points x inside the 
interval [x’”’’] which may be any part of the integration range. It is convenient to 
describe first the algorithms designed. 

5.2.1. For equations in the diabatic representation 
Let [x’, x”]  be the entire interval [x , ,  x , ]  and let this interval be divided into M 

sectors or into 2M half-sectors oflength h with x i  for i = 1,2,. . . ,2M being the endpoints 
of these half-sectors, i.e., x i  = x i -  + h and x Z M  = x, .  In the derivation of the algorithms, 
the recurrence relations (83), (84), (105), (103 aH104), and the respective relation for 
J-’ - ,  not listed in the present paper (see, Mrugala (1990)), were applied to some discrete 
counterparts of the L propagator, of the J-integrals, and of the functions v, 
a= +, -,O, defined for the half-sectors. These quantities appear in the result of 
discretization of the problems (86H86 b) with the procedure which was originally 
established (Mrugala and Secrest 1983a) to rederive the log-derivative algorithm of 
Johnson (1973) and later exploited and modified to generalize and to improve 
this algorithm (Mrugala 1983, 1985, 1989, 1990, Mrugala and Secrest 1983b, 
Manolopoulos 1986, 1988, Alexander et al. 1987, 1989a, b). The procedure involves: 

(i) conversion of (the diabatic form of) the problems (86)486b) defined on the 
sectors [ p ]  = [ x z P p 2 ,  x,,] for p = 1,2,. . . , M to integral equations for the 
functions +fpl(x)  with ci = +, -, 0 (see equation (92)). This is done with the aid 
of appropriate Green functions C,,,( = refCipl) determined either for the 
operator gref = I (dZ/dx2) (which is equivalent to the operator refD of 
equation (94)) or for the operators gfef = I (d2/dx2) + (kp), with 
(k”)’ = w:ef = diag w,(xzp-  

(ii) discretization of the integral equations by means of the Simpson formula 
modified to integrands having discontinuous first derivatives (Secrest and 
Johnson 1966). The error of this formula, when applied to the integral 

and p = 1,. . . , M .  

f + h  f (Y) dY, 
B - h  

with f having also the third derivative discontinuous, reads 

where & [ j - h ,  j + h ] .  
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44 F. Mrugala 

(iii) specification of boundary-value problems for functions F”zp- 2, ZP(xk), a = +, 
-, 0, p = 1 , .  . . , M ,  defined on three points xk, with k = 2p - 2, 2 p  - 1, 2p 

F”,-2,2p(xk)=(qf)- ‘ $ ~ ~ - 2 , 2 p ( ~ k ) - ~ o r , O Y k 4 ( ~ k ) ,  (1 19) 
where 

QkP=(I fYkWf) -  ‘ 7  Wf=Wx(Xk)-w/&, (119a) 

wk = wX(xk), Yk =(h2/6)(0) for Odd (even), and $;p - 2,2p(xk) $ZzP ~ 2x2p(Xk) 
with ‘ z’ meaning approximation due to the discretization. 

(iv) adaptation of the L matrix formalism to the discrete problems for the functions 
F:” - 2, 2p. This leads to specification of analogous problems for functions 
F;- l,I(xk), l= 1 , .  . . ,2M, defined on two points xk, with k = 1 - 1,l. In terms of 
derivatives (denoted here with over-dots) of these functions, are defined: the 
half-sector counterparts of the matrix L 

e.g., Lf- 1 , 1  = F, l,I(xl) (see equation (87)), the half-sector P matrices, PI- 1 , 1  

= FP- l , l (xI) ,  and Q matrices, Q1- 1, I = Fy- l,l(xl- l). Analogously to the latter 
quantities, the half-sector counterparts of the matrices PB and Qa for p = + , - 
are also defined, i.e., Pf-l,I=Ff!@l,I(xl) and QB-l,l=FP~B,’,I(~I-l), where the 
superscript ‘O(p)’ means that the inhomogeneity term 4 has been replaced with 
~ $ f l . ~ . .  in the respective equations for FP- 1, I .  The following expressions have 
been derived for these quantities 

- (1” - hSf- 1)  [ -s” 1” - hSP hL1-1,1= 

sp= hlkpl/sin(hlkPI), 

l p =  h(kP(cot(h(kP() if (kP)&>O; 
(120d) 

respective hyperbolic functions appear in the latter formulas’ if (kP)E < O  
o1 = (2h/3) (h/3) for odd (even) 1; 4z = 4(xl), and K~ = x(xI). 

By definition, the functions F;- l,l(x,J satisfy the same conditions at the boundaries 
of the half-sectors as the functions $$x..(x) do at the boundaries of the interval [x’, x”] 
(see equations (86 a, b)). In this sense, these functions may be considered to be the proper 
half-sector counterparts of the functions $ZrX... It is useful to introduce also the 
following ‘unproper’ half-sector functions 

&- 1, l(xk) = qkPCFP- 1, d X k )  + &a, O Y k 4 k 1 ,  
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Coupled equations of scattering 45 

for k = 1 - 1 , 1 , I =  2p - 1,2p and p = 1 , .  . . , M ,  in terms of which the half-sector J integral 
can be simply defined 

for 1=2p-172p and p = l ,  ..., M .  (120e) 

The respective integrals J:- 1,1,  J;. 1,1, J:-.f,I, and J;.f,, for B= +, -, can be defined 
analogously and, as expected, the expressions resulting for them are the same as those 
given above for the matrices - QL - 1, P, - 1, - Qf- 1, 1, and Pa- 1, 1, respectively. 

Besides the expressions for the half-sector L propagators and J integrals one needs 
also values of these quantities for intervals of zero length (see equation (85)) 
(Lo, o)- * = 0 for i = 1,2,3,4, Po, = 0, Pi, = 0, and J E, = 0. The results of 'adding' to 
these zero-length values the matrices LfL ,k,  Pk - 1 ,  k, Pi- 1 ,  k, and J :-? , k  for k = 1 , .  . . ,1 
according to the appropriate recurrence relations will be denoted as Lb,,, Po,,, P , , ,  and 
J&, respectively. For even values of I 

Lb, 2 Li(xo, xL) for i = 1, 2, 3, 4, 

PO, E P-(xo, XI)( = J&;), 

Po, E P(x,, xI)( = JLOx,), 

J 8, I 2 J xoxI .  
0 and 

To adapt the linear superposition relations (103 aH104) to the discretized problems 
and, eventually, to evaluate the functions t,b;ox2M(x) and I,+!&~~(x) at internal grid 
points, one has two choices (see Section 4): 

(iv)' that consistent with the (classical) invariant imbedding technique-to fix x' at 
xo and x at given grid point xk, where 0 < k < 2 M ,  and then, setting y and x" to 
subsequent points xl- and xI for 1 = k + 1 , .  . . ,2M, to obtain the following 
recurrence relations 

which should be used with the initial values F ,  k(Xk) = I and Fg, k(Xk) = 0. For 
even values of 1, F;. 1(xk) give approximate values I&, of the functions t+k",,,, at 
the point xk through the relation t,b:,I(xk) = qf[F",,(xk) + Oyk$(x,)], where 
p = (k/2)((k + 1)/2) for even (odd) k. 

(iv)" the way of the Ricatti transformation type-to fix the points x' and x" at xo 
and xZM, respectively, and then, setting x=x l  and Y = X ~ + ~  for 1=2M-1, 
2M-2,. . . , 1 ,  to use the relations 

F", ZM(X1) = k, OEP + E; F", ZM(X1 + l), for = - 9 0, ( 122) 

with the appropriate initial conditions posed at the point x Z M .  

Depending on whether the functions are required only at single or at all grid points, the 
choices (iv)' or (iv)" may appear more advantageous. Only algorithms employing the 
former way will be explicitly written below. 
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46 F.  Mrugalu 

To simplify the final algorithms for all the quantities of interest, the following 

zl=h(L:,I-L~,l+l) for 1=2p-1, 2p-2, i,=h(L:,,-o,w,) for 1=2p, 

working quantities have been introduced 

P, = h(P0,1 - Q I , I +  uz = h(P& - QCI+ jl = + J&+ for I= 2~ - 1, 

PI =  PO, I + odd, UI = h(P ,  I + W ~ I C ~ ) ,  jl = hJ;, for 1 = 2p, 

and p =  42,. . . , M ,  

F, = F&tk), 
The algorithms are: 

and fl = F:,&), for 1 = k,  k + 1,. . . ,2M. 

(a i) for the logderivative matrix L:, 2M 

zo = cI, where c >> 1, 

for 1=2p- 1, 

for Z= 2p, 

z l - l=51- l  +aP, 

zI = 21' - 81 + gf - SpZI_llSp, 

WI - spz;-*lsp, 
2h2 

3 
5 -aP-_ 

I -  

where 

p=1,2 ,..., M ,  
h2 
3 

ap = 1" + - wfef, gf = Sqf, 

L:,2M=1(52M+Fw2,). h2 
h 

(aii) for the matrix Po,,,(= J;,,) 

h2 
P o = T 4 0 9  

6gf4,, for 1=2p-1, 

PI= spz;_',pl - 1 + I"' p=1,2 ,..., M ,  

(Analogous formulae for the matrix Po, 2M( = 3 ,  2M) involve the matrices $I in 
place of &. The associated working quantity will be denoted by fil below.) 

(a iii) for the integral J E, 2 M  

j0 = 0, 
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Coupled equations of scattering 47 

(a iv) for the matrix 

h2 
Ug=-Kg,  

3 

= J;,'&) 

48 gfqgf, for 1 = 2p - 1, i h 2  

(a  v) for the function $;, 2M(xk) at point xk which may be the midpoint, k = 2p - 1, 
or the endpoint, k = 2p, of pth sector, where 1 < p d M 

Fk = I, 

F,=F,- lz;-'lsp, for 1=2p-  1,2p and p = p , p +  1,. . ., M, 

(a vi) for the function $:, 2M(xk) 

fk = 0, 

f, =f i -  -F[- lz,- - 1  lp,- 1, for / = k +  1, k + 2 , .  . . , 2 M ,  

Before commenting further on the above, let us present the algorithms 

5.2.2. For equations in the quasi-diabatic representation 
In the construction of the quasi-diabatic representation of the coupled equations 

according to the formula (1 17), the points x p  were chosen to be the midpoints of the 
sectors [ x 2 p - 2 ,  x Z p ] ,  i.e., X p = x z p -  and hp=h for p =  1,2,. . . , M.  Within each sector, 
the original non-diabatic equations were converted to the diabatic representation and 
then discretized with the procedure described above, giving two sets of the respective 
half-sector quantities. Let us denote them here as t,- 1, ,, Q,- ,,? i", - 1, QE 1, P:- 1, ,, 
for 1 = 2 p - 1 ,  2 p  and p = l ,  ..., M .  

Appropriate expressions for these quantities can be obtained by replacing 
in equations (119 aH120d): wi+%f=%k-w:ef, " q&+& and Kk-+jCk,  where 

k = 2 p -  2 , 2 p  - 1,2p.  t k ,  p p -  denote numerical values of the matrices t(xk; x Z p -  1)  which 
occur in the transformations TxZp ,(xk) for k = 2p - 2 , 2 p  - 1, 2p, defined in equations 
(76)<77). Obviously, t k , k  = 1 and t k ,  j = t I k .  The reference potentials are: 
wFef = diag % 2 p -  = diag wZp- lwfor p = 1 , 2 , .  . . , M .  Before insertion into the recurrence 
relations, the matrices r, - 1, , ,  P, ~ 1,,,  Q, - 1,,, PI'_ 1,1, and 0: 1,, were converted back to 
the non-diabatic representation using the formulas (1 10) and (1 10 a)  with tl(x)+tT(x; xi) 

*k = t:, z p  - l w k t k ,  z p  - 1 with w k  = w(xk), 4 k  = tf 2 p  - 1 +k> and z k  = t:, 2 p  - 1 Kktk, 2 p  - 1, for 
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48 F. Mrugala 

in the first halves of sectors, i.e. for 1 =2p- 1, and with tl(x)-ttT(x;x,-l) in the second 
halves, i.e. for 1 = 2p, where p = 1,2,. . . , M .  The result is 

Apart from the replacement of w, with the matrix w coming from the non-diabatic 
equations, equations (72) and (74), the matrices ap and S s p P l  denote here the same 
quantities as defined in the diabatic case (see equations (120 c), (1 19 a) and the formulae 
(a i)). s k  = WkWk for k = 2p - 2,2p. The conversion of the matrices P, - 1 ,  ,, Q, - ,, ~ l + _  ,, 
and 0;- 1 , ,  to the non-diabatic representation gives the expressions (120 a, b) for the 
respective matrices P, - ,, QI- {, PI’_ 1, ,, and Qt- ,. Using working quantities defined 
as in the diabatic case, one obtains the final algorithms: 

(b i) for the matrix L:,2M. The initial formula-for 5,-and the last-giving 

” 

L&,-are, of course, the same as in the algorithm (ai). The others read 

for 1=2p- 1, 2, - 1 = 5,- 1 + t, - 1, , apt:- 1 ,  I ,  

z, = 21p - 81 + gp - s q -  1, , z;-l1 t, - 1 ,  , s p ,  

*. 2h2 
z - - -  w,+tT- l,l(aP-sf’z;_’,sP)t,- 1, , ,  for Z=2p, 

3 I -  

p=1,2 ,..., M .  

(bii) for the matrix P,,2,=J~,2M. The first term in the formula for pf in the 
algorithm (aii) is modified to sPtT-l,,z;-llp,-l for Z=2p-1 and to 
t ~ ~ l , l s p z ~ ~ l , p , ~ l ,  for 1=2p. (Compare the off-diagonal blocks of Ll-l , ,  in 
equations (123) and in equations (120).) 

Similar differences in comparison with the algorithms (a iv) and (a v) occur in the 
respective formulae (b iv) for the matrix PO,2M and (b v) for the function *6.0, 2M(~k).  The 
appropriate formulae (b iii) for the integral J 8, 2 M ,  and (b  vi) for the function *:, 2M(~k)  
look the same as in the diabatic case. 

Obviously, all the formulae (b iHb vi) reduce to the diabatic formulas (a it(a vi) 
when t , - l , ,=I  for 1= 1 ,..., 2M, i.e., when c=O in equation (74). 

The point of concern in the construction of the above algorithms was to make them 
especially efficient in handling self-adjoint coupled equations. Thus, it is in order to 
stress that the basic working quantity-the matrix z, which has to be inverted at every 
step 1 for 1 = 1,2,. . . ,2M-is a symmetric matrix. The approximate log-derivative 
matrices generated with the algorithms (a i) or (b i) satisfy strictly the respective 
symmetry relation (82). 

Obviously, the above algorithms may be applied also to (non-self-adjoint) 
equations which involve non-symmetric matrices w, or w (see equations (74) and (76)), 
e.g., to the coupled equations in the CCA schemes. It should be noted, however, that the 
matrices Po, 2M generated with the formulae (a ii) or (b ii) in such cases will be equal to 
the integrals tJ;,2M 

2 M  
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Coupled equations of scattering 49 

involving respective solutions +$;, Z M ( ~ )  of the equations with transposed matrices w, 
or w. (An analogous remark concerns the matrices P ,  2M generated with the formulae 
(a iv) or (b iv).) The sign of transposition has to be added to the matrices and gf’ 
standing in the formulae (a ii) and (b ii) in order to make them work as generators of the 
integral J&( = +Po, 2M). Moreover, it should be remembered in the non-symmetric 
cases that of the two quantities pl - and - occurring in the formulae (a iii) the former 
is related to the matrix 

Considering the character of the discretization procedure used in the derivation, 
one should classify the presented algorithms as hybrid approximate-solution 
approximate-potential ones (Manolopoulos 1986). It should be remembered here that 
in the purely approximate-potential approach the reference potentials are always 
chosen to give adequate approximations to the entire potential coupling matrix within 
particular sectors. The construction involves transformations to a locally adiabatic 
representation via diagonalizations of the coupling matrix at the midpoints of sectors. 
In the purely approximate-solution approach in turn, no reference potentials are used. 
Thus, setting w;ef = 0 and sp = IP = I for p = 1, . . . , M in the formulae (a iHa  vi) and (b ib 
(b vi) one obtains purely approximate-solution versions of these algorithms. The 
difference between the two versions becomes visible in behaviour of errors of the 
quantities calculated when the energy E used in calculation is increased (considered 
here are problems where E enters only the diagonal elements of the respective matrices 
w, or w). The errors of the results generated by the purely approximate-solution 
algorithms reveal a rapid cubic growth with energy. Still, efficiency of these algorithms, 
even at not quite low energies, is very high. This is due to the remarkable simplicity of 
the formulae of the purely approximate-solution version. In the hybrid algorithms, the 
energy is included into the reference potentials and much of the energy dependence of 
the final results is accounted for exactly through the matrices s P  and 1P (equation 
(120d)). The growth of errors with energy is considerably reduced, becoming close to 
linear (Mrugala 1989). 

A detailed comparison of the algorithm (a i) with its purely approximate-solution 
counterpart, i.e. with the original log-derivative of Johnson (1 973), was presented by 
Manolopoulos (1 986, 1988) on some standard inelastic scattering tests problems. 
Applications of this algorithm to reactive scattering calculations were reported by 
Manolopoulos and Wyatt (1989) and recently by Lepetit and Launay (1991). Further 
tests of the formulae (a i) and, first of all, of the formulae (a ii) and (a iii) in the hybrid and 
in the non-hybrid versions were provided by Mrugala (1988, 1989) in application 
to half-collision calculations concerning photodissociation of H,. The algorithm 
(a i H a  iii) was tried also in application to atomcliatom reactive scattering, 
namely, in solving variationally the BKLT equations (see Section 2) for the collinear 
H + H2-+Hz + H reaction (Mrugala 1990). It was demonstrated, in particular, that all 
the matrix elements occurring in the Schwinger variational expression for the reactance 
matrix, also those involving Green functions could be evaluated without storing a large 
amount of intermediate results such as the ‘half-integrated Green functions’ (Schwenke 
et al. 1988, 1989). A ‘half-integrated Green function’ in the L-matrix formalism is, of 
course, the function $,“.,..(x) (see equations (86), (86 b)). Direct determination of such 
functions becomes necessary, e.g. in evaluation of some matrix elements (involving 
non-local potentials) which arise in the Newton variational method (Newton 1982) 
when it is applied to reactive scattering (Schwenke et al. 1988). It would be interesting to 
test in this context the algorithm (a vi) or its version based on the Riccati transform- 
ations (122). 

whereas the latter to the integral J;,l-l. 
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50 F.  Mrugala 

The algorithm (aiv) for evaluation of the free-free type integrals J;;: (or of the 
matrix P-(x',x")) was published by Mrugala (1990) as a modification of the purely 
approximate-solution version of this algorithm derived earlier (Mrugala 1985). As 
follows from the comment given in Section 5.1, see equations (106H109), the formulae 
(a iv) (and also (b  iv)) are directly applicable to evaluation of the energy derivative of the 
log-derivative matrix, i.e. J;,ik g(d/dE)L4(x0, xZM) when K = (d/dE)w, (or K = (d/dE)w 
in the non-diabatic case). Concerning this particular application, it is worth stressing 
that the approximations to the logderivative matrix and its energy derivative, L:, 2M 

and J&'2;M, strictly satisfy the relation 

-(L4 d )- J - ' -  
dE 0 , 2 M  - 0,2M9 

if they are obtained with the purely approximate-solution versions of the algorithms 
(a i) and (a iv), respectively, (or (b i) and (b iv)). In other words, the formulae (a iv) in the 
approximate-solution version follow in this case from differentiation of the formulae 
(ai) (in the same version, of course). This is the means of adaptation of the original 
algorithm of Johnson to the direct evaluation of energy derivatives which was 
suggested recently by Darakjian and Hayes (1990). The algorithm was implemented 
successfully (Darakjian et al. 1991) to 3D calculations of resonances in the He 
+ H +  -+HeHf + H reaction. Concerning application of the hybrid algorithms (a iv) or 
(b iv) to the evaluation of (d/dE)L4, one should stress that these algorithms are much 
simpler than the ones one would get by differentiating with respect to E the formulae 
(a i) or (b  i). This simplicity is achieved at the expense of assuring only approximately the 
relation (124) between the quantities generated. Nevertheless the overall accuracy of 
the energy derivatives of the log-derivative matrix generated with these algorithms can 
improve considerably in comparison with the accuracy yielded by the respective purely 
approximate-solution algorithms. An illustration of that is provided in Section 5.2 
(see also Mrugala (1990)). 

The extension of the logderivative algorithm to determination of scattering wave 
functions (the formulae (a v)) was originally suggested by Alexander et al. 1989a, b). It 
has been tested so far on some model curve-crossing problems (Alexander et al. 1989b) 
and applied to analysis of some spin-changing transitions in atomic collisions 
(Alexander and Pouilly 1989a). 

The algorithm for generating the L matrix in the non-diabatic representation-the 
formulae (b i) plus appropriate formulas for the blocks L3( = - L2)= and L', not listed 
explicitly but easily obtainable from equations (123) and ( 8 3 t h  a simplified version of 
the algorithm proposed previously (Mrugala and Secrest 1983b) and tested on collinear 
reactive scattering problems (Mrugala 1987, Mrugala and Romelt 1987) against the 
R-matrix propagation (Light and Walker 1976b, Zvijac and Light 1976, Bondi et al. 
1982) and against the S-matrix propagation (Manz 1974, Hauke et al. 1980, Romelt 
1980, 1982) methods. By implementing that approximate-solution algorithm into the 
R-matrix code of Walker (1978) an improvement in efficiency of (Mrugala 1987). 
That algorithm was exploited also in the L-matrix propagation code 
constructed especially for the treatment of collinear reactions in Delves' coordinates 
(Mrugala and Romelt 1987). Fast convergence with respect to accuracy control 
parameters in this code was exploited in performing lifetime analysis of vibrational 
resonances in ABA-type molecules (Bisseling et al. 1987). The present algorithm (b i) is 
much simpler than the previous one due to the use of the half-sector propagators 
instead of the sector propagators. So, the performance of the L-matrix method 
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Coupled equations of scattering 51 

demonstrated in the previous investigations would be even better if the present version 
were employed. 

Besides being exploited in the derivation of the above algorithms, the recurrence 
relations of the L-matrix formalism were used also to modify some existing purely 
approximate-potential methods. The linear reference potential method of Gordon 
(1969, 1971); (see also Alexander and Gordon (1971)) has been reformulated to a stable 
scheme (Alexander and Manolopoulos 1987) and a new hybrid code using this 
reformulated algorithm and the approximate-solution log-derivative algorithm in 
different regions of the integration range has been constructed (Alexander 1987). 

Reformulation of the R-matrix propagation method of Light and Walker (1976b) in 
terms of the matrix L was demonstrated to give a completely equivalent computational 
scheme (Mrugala 1987) (which is consistent with the conclusions of the comparison of 
the R-matrix and L-matrix formalisms presented in Section 5.1). 

5.3. A comparison with other invariant imbedding algorithms 
5.3.1. With the R-matrix propagation algorithms 

As already mentioned, any difference in performance between the generalized log- 
derivative algorithms and the R-matrix propagation algorithms may stem only from 
the use in their derivations of different approaches to approximate the respective 
sector-propagators. So, the detailed comparisons (Manolopoulos 1986,1988, Mrugala 
1987) could only confirm to a lesser or larger extent the conclusion of the 1981 study by 
Thomas et al. on complementarity of the approximate solution and of the 
approximate-potential approaches with respect to their usefulness in scattering 
calculations. 

It remains to be mentioned that besides the basic algorithm for determination of the 
matrix R itself there is the well-established and commonly used extension of the R- 
matrix propagation method for evaluation of the first-order transition amplitudes 
(equation (14)) for photodissociation of triatomic molecules (Kulander and Light 1980, 
Schneider and Taylor 1982); so, the formulae (aii) (or (bii)) of the generalized log- 
derivative method together with the formula (1 15) can be considered and exploited as 
an approximate-solution complement to this R-matrix algorithm (see Manolopoulos 
1988). It should be mentioned also that the first attempt to design an invariant 
imbedding approximate-solution algorithm for determination of the first-order 
amplitudes was undertaken by Singer et al. (1982). With respect to efficiency, however, 
their method (consisting of applying the standard Runge-Kutta procedure to some 
initial value problems formulated for the amplitudes in differential equation form) 
cannot complete with the generalized log-derivative algorithm. 

A way of extending the established scattering methods, and the R-matrix 
propagation method in the first place, to determination of second-order transition 
amplitudes (equation (15)) was indicated by Singer et al. (1987). Judging by the degree of 
complexity of the algorithms derived by these authors, the generalization of the 
log-derivative algorithm-the formulae (a  iii) plus equation (1 1 6 F i s  believed to offer a 
more efficient way of evaluation of these amplitudes. 

The most recent extension of the R-matrix propagation method, proposed by 
Walker and Hayes (1988), is to direct evaluation of energy derivatives of the R matrix 
(eventually, of the S matrix). This extension does not seem, however, to be fully 
satisfactory, partly because of the approach taken to its derivation. The differentiation 
with respect to energy of the formulas of the basic algorithm for the matrix R yields 
quite a complicated result when the transformations to locally adiabatic representation 
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52 F .  Mrugaia 

are also energy dependent in these formulae. The complication would be less severe if 
an approach analogous to that presented in Section 5.1 were taken, i.e. if boundary 
value problems appropriate for the matrix R were differentiated with respect to E 
before applying any discretization procedure to them. Still, it remains to be tested as to 
what extent (if at all) purely approximate-potential algorithms may be more efficient 
than the hybrid algorithms, (aiv), (b iv), or (c iv) (see the next subsection), in evaluation 
of the energy derivatives or, more generally, of free-free type transition amplitudes. 

No extensions of the R-matrix propagation method to determination of the 
functions exist to be compared with the formulae (a  v) and (a vi). 

It is certainly much more interesting to learn how the log-derivative algorithms 
compare with other algorithms of the same category, in particular. 

5.3.2. With renormalized Numerov algorithms 
Under this heading, a number of invariant imbedding algorithms will be considered 

which have been derived on the basis of the following two-step discretization scheme of 
second-order differential equation f 2 )  + wf= 0 (see e.g. Henrici (1964)) 

f(x + h) + u ~ ( x )  +f(x - h) bof‘2’(x + h) + blf(2’(X) + I ! , J ~ ~ ‘ ~ ) ( X  - h) + R. (125) 

In the original Numerov scheme, the coefficients a,  bo, and b, are a =  -2 ,  b, =h2/12,  
and b,  = h2 - 2b0, and the expression resulting for the local discretization error is 

where &[x-h,  x + h ] .  Obviously, R=O for f(x)= 1 ,  x, x2 ,  x3, x4, x5. In the scheme 
modified by Raptis and Allison (1978), the zero error is assured for the functions 
f(x)= 1 ,  x, x2, x3,exp [ +(O,, , ) ’ ’~X],  where or,. denotes a constant which approximates 
w(x) within at least a single sector [ x  - h, x + h].  Appropriate sets of formulas for the 
coefficients a,  b, and b ,  have also been derived to make the scheme (125) exact for the 
functions f ( x )  = 1 ,  x ,  exp I: + (W, ,~ )~~~X] ,  x exp [ k ( o , , ~ ) ~ ~ ~ x ]  (Ixaru and Rizea 1980) and 
for the functions f(x) =exp [ + ( W ~ ~ ~ ) ~ / ~ X ] ,  x exp [ + ( G O , , ~ ) ~ ~ ~ ~ ] ,  x2  exp [ k ( W , , ~ ) ~ / ~ X ]  
(Ixaru and Rizea 1983). The former case will be referred to as the TR scheme. 
Correspondingly, the abbreviations N and RA d l  be used to denote the schemes of 
Numerov and of Raptis and Allison. 

For the first derivative off(x), the following formula has been derived (see, Johnson 
1978a) which may be used together with the scheme (125) in the N and RA versions 

(127) 
h2 
12 

2hf ‘ ’ ’ (~ )  Z ~ ( X  + h) -f(x - h) -- Lf‘”(x + h) -f2’(x - h)], 

The following boundary-value problems for three-point matrix difference equ- 
ations result from applying the scheme (125) to the systems of coupled second-order 
differential equations for the functions +~,,..(x) with CI = -, 0 in the diabatic represent- 
ation, (equations (86)486 b) with D =Ox) 

u:, 2 ~ ( X k +  1)  - QkU;,zdXk) + u:, 2&k- 1) 

=dZ,o(bo&+i + b i 4 k + b o $ k - i ) ,  for a=- ,@ (128) 

U,2,(xo)=O, U C 2 , ( x 2 d = k  U~,,,(xo)=U~,,,(x,,)=0, 
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Coupled equations of scattering 53 

where 

Qk= -(a + bl w# +bow,)- l ,  

wk = w Z ( x k h  $k = N X k ) 7  

x,=x,+kh, x,=x’, xzl ld=xS,  

a, b,, and b, denote here diagonal matrices built from the coefficients a, bo, and b,, 
respectively. In the case of the N scheme, a=aI, bo=boI, and b, =blI. In the cases 
of the RA and IR schemes, the matrices are obtained by replacing the reference value 
wref in the respective formulas for a, b,, and bl with a diagonal matrix w , , ~  Here, wref 
will be chosen in exactly the same way as in the log-derivative aIgorithms, i.e. 
W , ~ ~ = W ~ ~ ~ = W ~ ( ( X ~ ~ - ~ )  within thesectorp=[x,,-,,~,~] forp=l,2, ..., M. (Thus, new 
coefficients a, b,, and b, have to be evahated for every sector, i.e. at every second step.) 
The solutions U : , 2 M ( ~ k )  with a= - ,0  give approximate values of the functions 
I&,~,,(XJ through the following formula 

+ z w 2 M ( x k ) g  ~ , ~ M ~ x ~ ) = ( I + ~ ~ w ~ ) - ~ U ~ , ~ I M ( X ~ ) ( I +  6 ,  - b 0 ~ 2 d  

The corresponding approximation Lg, 2M to the logderivative matrix L:ox,, (if 
required} may be evaluated by applying equation (127) to the function +;0x2M(x2M). 

Application of the invariant imbedding technique to the problems (128) defined on 
the interval [x,,x,,] requires that these problems be related to the analogous 
probIems defined on the intervals [x,, XJ for 1 = I , .  . . , 2M - 1. Let U:,r(~a) with 0 < k < 1 
and 1 = 1,. . . , 2 M  - 1 denote solutions of these problms. Actually, the relations 
between the solutions U:,, and U:,f- for c1= -,0 are the same as in the case of the 
functions F;, I introduced in the derivation of the logderivative algorithms (equation 
(121)), i.e. 

U:,XxJ=~a,oUO,,~- ltxd+UG,t- 1 ( x & J ; , t ( x * -  I), 

for a= -,O, and k < l .  (129) 

Using these relations, one can easily derive the corresponding recurrence relations for 
the following quantities 

R, = u ,  I + I ( X 3 ,  rl= G, I + l(Xl), 

I 

Jf= o~C(a+Iro~~-’UQO,~~~lrT~* €or a= -%as 
k = O  

where W, are the weights of the ordinary Simpson quadrature formula 

and On = 2 (2) for k odd [even). 
h 

Lt)o=Lt)2M =- 
3’ 3 3  

These relations are the basic constitutents of the foIlowing algorithms: 

(c i) for the matrix R,, (or Lg, ZM); 

R, = 0, 

Rt =IQi - Rt - 1) ~ ‘ 7  
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54 F.  Mrugafa 

where 

Qi  = -b,b, + Cql, 

91 = (b, + bow,b,)- 
c = b, -boa (= hZI for the N and RA schemes) 

for /=  1,2,. . . ,2M, 

where pI=(~bo+dw,b,)q,, for 1=2Mk 1, ,=;I]. 

(c ii) for the integral JO, 2 M ;  

J i  =0,  

J; = RT- J;- + cGl(boq,)Tq51, for / = 1,2,. . . , 2 M ,  
1 T  - JO, 2 M  = b; YqYM) J2M? 

(c iii) for the integral J 8, 2M; 
r- ,=O, J g = O ,  

rl-1 = R l - ~ ( r ~ - z - b o ~ l - b ~ ~ l - ~  -boq5l-z)7 
Jp =rT- lJ;- + J  p- 1, for /=  1 , 2 , .  . . ,2M,  

J :, 2 M  = J ;M? 

(civ) for the integral JO,iG; 

J; ' - = 0, 

J;'- =RT- ,J ;-';R, ~ +61(boq,)TKlboq,, for 1 = 1,2,. . . ,2M, 

JO,'& =(qydb,l)TJ.&-qiib, '. 

UI = U ,  l(xk), for I = k,  k + 1 , .  . . , 2 M  is used) 
(c v) for the function +b< ZM(Xk) at a grid point x k l  < k d 2 M  - 1; (working quantity 

uk = 1, 

U,=U,-,Rl-, ,  for I = k + l ,  k + 2  ,..., 2 M ,  
-1b-1 $< Z d X k ) =  bOqkUZMq2M 0 . 

The formulae (c i) and (c v) with the coefficients a, b,, and bl of the N scheme are 
essentially the formulae of the renormalized Numerov method proposed by Johnson 
(1978a, b). The only difference is that the basic working quantity used by Johnson is the 
inverse of the matrix R, used here. 

There are evident similarities between the above formulae of the renormalized 
Numerov method and the formulae (a iHa v) of the generalized log-derivative method. 
They result not only from the fact that in construction of both methods the same 
technique, i.e. invariant imbedding, was employed to impose the boundary conditions 
but also from the common features of the procedures used to discretize the original, 
differential or integral, equations. In both methods, three-point schemes are used. 
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Coupled equations of scattering 55 

Obviously, the Numerov (N) scheme falls into the category of the purely approximate- 
solution approaches. The modified schemes-RA and IR--correspond clearly to the 
hybrid approximate-solution approximate-potential approach described in the previ- 
ous subsection. The accumulated discretization errors in both the Numerov and the 
logderivative methods are proportional to h4. There are, of course, differences in the 
proportionality constants between the different versions of these methods. In 
particular, the dependence on energy of these factors in the N, RA, and in the IR 
versions of the Numerov method is cubic, quadratic and linear, respectively, (Ixaru and 
Rizea 1987) and, as mentioned previously, it is cubic and linear, respectively, in the 
nonhybrid and in the hybrid log-derivative algorithms. 

Some quantitative information on relative accuracy of the non-hybrid and hybrid 
versions of the log-derivative and of the Numerov methods is provided in tables 1 and 
2. The test problem is the s-wave scattering in the Woods-Saxon potential and the 
results reported concern determination of energies at which the phase shift (modulo n) 
crosses n/2 (table 1)  and determination of resonance energies (table 2 A )  and time delays 
(table 2 B) via evaluation and analysis of the lifetime matrix (the collision time delay 
function, in the single channel case). In the latter calculations, the formulae (a iv) of the 

Table 1. s-wave scattering in Woods-Saxon potential.? Absolute errors,$ E Z ;  - of results 
by the non-hybrid and hybrid versions of the log-derivative and Numerov algorithms. 

Non-hybrid Hybrid 

Eref n / 2  h l o g d e r  N§ log-der RAS IRS 

53.588872 & - 230727 - 206 267 -41 
1 

1 

~ 32 - 37860 - 141 10 - 12 8 -1 
64 - 2342 - 879 < 1  <1  <1  

- 3: -1329226 -419227 

~ 

163.215341 & -9106839 -633 4481 -137 
- 30 134 -4 

- 79039 - 29500 -2 5 < 1  
341.4958’74 & -2032 36308 -411 

- 32 -7536068 - 65 1030 -12 
- -1185616 -436825 -4 32 < 1  

989.701916 & 3580 1052006 -3933 
-253 23419 -51 
-11 689 -1 

1 
64 
- 

1 

1 
32 
1 

64 

- 

- 

-4417705 -1637376 < 1  23 

?Test problem of Ixaru and Rizea (1980, 1987): 

V(x)=u,/(l +t)+u,t/(l + t ) , ,  

t = exp [(x -xo)/uo], u1 = - u,/ao, uo = - 50, a, = 0.6, xo = 7; 

the integration range [x’, x”] = [O, 151. Determined are the values of E at  which the phase shift 
(modulo n) crosses n/2. 

$ Given in 10- units. 
N-the original Numerov scheme. RA and IR denote the schemes modified by Raptis and 

Allison and by Ixaru and Rizea, respectively. In the notation of Ixaru and Rizea (1987), IR 
corresponds to  the S, scheme. The coefficients a, b,, and b ,  were calculated at every second step 
according to  the formulas listed by Ixaru (1980). 
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56 F.  Mrugulu 

Table 2. s-wave resonances in Woods-Saxon potential.? Errors of results calculated with the 
non-hybrid and hybrid versions of the log-derivative and Numerov algorithms. 

(A).  Absolute errors of resonance energies,$ E:Zi-- E,,,. 

Non-hybrid Hybrid 

E::: h log-der N§ log-der RA§ 

(1) 6-1080391 & 16813(-7)11 6276(-7) 345(--7) 69(-7) 
- 24 1045(-7) 392(-7) 22(-7) 4(-7) 

(2) 12805501 & 2337(-6) 872(-6) 41(-6) 8(-6) 
- 2, 145(-6) 54(-6) 2(-6) <1(-6) 

(3) 19.782826 & 3166(-6) 1181(-6) 48(-6) 8(-6) 
(4) 26-99595 & 419(-5) 156(-5) 6(-5) I(-5) 
(5) 34.4097 32  

(6) 42.0668 32 

(7) 50.1044 32 

- 1 54(-4) 20(-4) <1(-4) <I(-4) 
- 1 71(-4) 26(-4) 1(-4) <1(-4) 
- 1 89(-4) 36(-4) <1(-4) 2(-4) 

(8) 58.6331 - 22 130(-4) 38(-4) (1(-4) 7(-4) 
(9) 67-6729 - :2 124(-4) 99(-4) 1(-4) 21(-4) 

(B). Relative errors of time delays at resonance energies,$ 
c~(E,,JI~(E:::) - w4. 

Non-hybrid Hybrid 

@::I) log-der N§ log-der RA§ 

(1) 0.46645743 (4)11 6.9 (2) 2.6 (2) - 3.7 (1) 4.7 (0) 
(2) 0.64178458 (3) 7.3(2) 28(2) -3.6(1) 1'3(1) 
(3) 0.12122577 (3) 8.4(2) 3.1(2) -3.3(1) 1.6(1) 
(4) 0.27408724 (2) 9.7(2) 3.7(2) -28(1) 3.3(1) 
(5) 0.71720718 (1) 1.1(3) 4.7(2) -2.3(1) 8.3(1) 
(6) 0.21373143 (1) 1.5(3) 5.0(2) -1.9(1) 4.5(1) 
(7) 0.68367511 (0) 1.9(3) '9.3(2) -1.9(1) 3.7(2) 
(8) 0.19751232 (0) 4.7(3) 1.5(3) -5.2(0) 5.5(2) 
(9) 0.16540420 (-1) 28(4) 2.2(4) -2.2(2) 1.7(4) 

?The parameters of the problem are as listed in table 1 except a,=0.2 here. 
$ The resonance energies, E,,,, are determined as positions of positive value maxima of the 

collision time delay function z(E) 

d d 
dE dE 

z (E)  =2-6(E) =(1+ K Z ) - '  - K ,  

where 6 is the phase shift and K = tg(6) is the single channel K matrix. 
8 See table 1. 
1 1  The numbers in parentheses denote powers of 10. 
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Coupled equations of scattering 57 

log-derivative method and (civ) of the Numerov method were employed to direct 
evaluation of the energy derivatives of the logderivative matrix (see Section 5.1). 

The observation to be made on the purely approximate-solution versions of both 
methods is that the (global) errors of the logderivative results are larger than the errors 
of the results by the Numerov (N) algorithm by a factor which is pretty close (in all cases 
in table 1 and in the majority of cases in table 2) to the ratio of the coefficients 1/90 and 
1/240 standing in the respective expressions for the local discretization errors (compare 
equations (1 18) and (126)). The same was seen in the test provided by Johnson (1978a) 
which concerned determination of bound state energies in a Morse potential. Actually, 
the observation has been confirmed in calculations on many problems, among them 
also on problems involving coupled equations and requiring evaluation of integrals of 
J - -  and J '-type (Mrugala 1989). Despite this practical evidence, however, one should 
not take the factor of 240/90 as a strict measure of relative accuracy of the renormalized 
Numerov and the log-derivative algorithms. There may be situations where the term 
caused by discontinuity of the third derivative of the integrand in the expression for 
error of the modified Simpson formula, equation (1 18), will intervene more significantly 
in the global error of results generated by the log-derivative algorithm. To complete the 
comparison, one should also mention that despite their simpler appearance the 
formulas of the renormalized Numerov algorithm involve a larger number of 
operations per step than the formulas of the logderivative algorithm. For example, 
two matrix inversions per step (half-sector) are required in evaluation of the matrix R,, 
(or L&) according to the formulae (ci) whereas only one and one half (i.e. two per 
sector) matrix inversions are involved in evaluation of the log-derivative matrix 
according to the formulas (ai). Two more matrix multiplications per step occur in the 
formulae (c iv) than in (a iv). Thus, with the only reservation that accuracy of functions 
generated by the logderivative algorithm at unevenly numbered grid points may not 
be quite the same as the accuracy at even points, one can estimate efficiency of this 
algorithm, strictly of the non-hybrid version, as being comparable with efficiency of the 
Numerov (N) algorithm. 

Concerning comparison of the hybrid versions of the methods, table 1 seems to 
support the theoretical finding of the rate of growth of errors with energy being the 
same in the logderivative and in the Numerov-IR algorithms. In absolute values, the 
errors in the latter algorithm are smaller than in the former. The RA version appears in 
table 1 to be less accurate than the log-derivative algorithm. Table 2 shows, however, 
that at low energies also this version of the Numerov method may perform better than 
the hybrid log-derivative algorithm. Similar observations were made in other tests, on 
simple two channel problems. 

Unfortunately, the tests of the hybrid logderivative algorithms versus the hybrid 
Numerov related algorithms performed so far, including the ones reported in tables 1 
and 2, do not suffice to draw any conclusions on the relative efficiency of these 
algorithms, especially in multichannel calculations. As a contribution to possible future 
investigations on this matter, let us note that the basic working quantity of the 
renormalized Numerov method, the matrix R,, ceases to be a symmetric matrix in the 
IR version. This is because in this version (see Txaru (1980)) the diagonal coefficient 
matrix c involved in the formulae (c i) is not just a constant multiplied by the unit matrix 
and it does not necessarily commute with the matrix ql. 
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